IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v240y2023ics0951832023004957.html
   My bibliography  Save this article

Maintenance optimization for dependent two-component degrading systems subject to imperfect repair

Author

Listed:
  • Cheng, Wanqing
  • Zhao, Xiujie

Abstract

Appropriate maintenance policies play an important role in improving system availability and ensuring safe operation. Seeking optimal maintenance policies for technical systems has been widely pursued by reliability engineers and researchers. In this paper, we propose a maintenance optimization method that is applicable to dependent two-component systems subject to degradation and imperfect repair. We consider both economic and stochastic dependencies between the components and establish a random-effect imperfect repair model to realistically model the degradation process and maintainability of components. Moreover, we model the maintenance problem under the infinite horizon using the Markov decision process and obtain the optimal solution via value iteration algorithm. Structural insights are gleaned using the stochastic orders. A numerical example is then presented to illustrate the proposed methods. We discover that the characteristics of imperfect repair can considerably influence the optimal policies. Specifically, the mean effect of imperfect repair has a larger influence on maintenance decisions while the influence of imperfect repair variability effect is relatively small.

Suggested Citation

  • Cheng, Wanqing & Zhao, Xiujie, 2023. "Maintenance optimization for dependent two-component degrading systems subject to imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023004957
    DOI: 10.1016/j.ress.2023.109581
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023004957
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109581?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akash Deep & Shiyu Zhou & Dharmaraj Veeramani, 2022. "A data-driven recurrent event model for system degradation with imperfect maintenance actions," IISE Transactions, Taylor & Francis Journals, vol. 54(3), pages 271-285, March.
    2. MERCIER, Sophie & CASTRO, I.T., 2019. "Stochastic comparisons of imperfect maintenance models for a gamma deteriorating system," European Journal of Operational Research, Elsevier, vol. 273(1), pages 237-248.
    3. Do, Phuc & Assaf, Roy & Scarf, Phil & Iung, Benoit, 2019. "Modelling and application of condition-based maintenance for a two-component system with stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 86-97.
    4. Mosayebi Omshi, E. & Grall, A., 2021. "Replacement and imperfect repair of deteriorating system: Study of a CBM policy and impact of repair efficiency," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Shahraki, Ameneh Forouzandeh & Yadav, Om Prakash & Vogiatzis, Chrysafis, 2020. "Selective maintenance optimization for multi-state systems considering stochastically dependent components and stochastic imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    6. Wu, Shaomin, 2019. "A failure process model with the exponential smoothing of intensity functions," European Journal of Operational Research, Elsevier, vol. 275(2), pages 502-513.
    7. Liu, Bin & Pandey, Mahesh D. & Wang, Xiaolin & Zhao, Xiujie, 2021. "A finite-horizon condition-based maintenance policy for a two-unit system with dependent degradation processes," European Journal of Operational Research, Elsevier, vol. 295(2), pages 705-717.
    8. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    9. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    10. Liu, Gehui & Chen, Shaokuan & Jin, Hua & Liu, Shuang, 2021. "Optimum opportunistic maintenance schedule incorporating delay time theory with imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    11. Yang, Hongbing & Li, Wenchao & Wang, Bin, 2021. "Joint optimization of preventive maintenance and production scheduling for multi-state production systems based on reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    12. Zhao, Xiujie & Chen, Piao & Gaudoin, Olivier & Doyen, Laurent, 2021. "Accelerated degradation tests with inspection effects," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1099-1114.
    13. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    14. Xu, Jun & Liang, Zhenglin & Li, Yan-Fu & Wang, Kaibo, 2021. "Generalized condition-based maintenance optimization for multi-component systems considering stochastic dependency and imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    15. Fang, Guanqi & Pan, Rong & Hong, Yili, 2020. "Copula-based reliability analysis of degrading systems with dependent failures," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    16. Andriotis, C.P. & Papakonstantinou, K.G., 2021. "Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Meiyan & Wu, Bei, 2024. "Optimal condition-based opportunistic maintenance policy for two-component systems considering common cause failure," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    2. Zhang, Wenyu & Gan, Jie & He, Shuguang & Li, Ting & He, Zhen, 2024. "An integrated framework of preventive maintenance and task scheduling for repairable multi-unit systems," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    3. Karabağ, Oktay & Bulut, Önder & Toy, Ayhan Özgür & Fadıloğlu, Mehmet Murat, 2024. "An efficient procedure for optimal maintenance intervention in partially observable multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Pliego Marugán, Alberto & Pinar-Pérez, Jesús M. & García Márquez, Fausto Pedro, 2024. "A reinforcement learning agent for maintenance of deteriorating systems with increasingly imperfect repairs," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    5. Cousino, Théo & Brissaud, Florent & Doyen, Laurent & Gaudoin, Olivier & Marle, Leïla, 2024. "Imperfect maintenance modelling and estimation for interval-censored data," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    6. Zhang, Wenyu & He, Shuguang & Zhang, Xiaohong & Zhao, Xing, 2024. "Joint optimization of job scheduling, condition-based maintenance planning, and spare parts ordering for degrading production systems," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    7. Goyal, Dheeraj & Finkelstein, Maxim & Hazra, Nil Kamal, 2025. "On repairable systems with time redundancy and operational constraints," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    8. Liang, Xiaojun & Cui, Lirong & Wang, Ruiting, 2024. "Non-renewable warranty cost analysis for dependent series configuration with distinct warranty periods," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    9. Ning, Ru & Wang, Xiaoyue & Zhao, Xian & Li, Ziyue, 2024. "Joint optimization of preventive maintenance and triggering mechanism for k-out-of-n: F systems with protective devices based on periodic inspection," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    10. Ji, Ziguang & Chen, Yi & Ma, Xiaobing & Cai, Yikun & Yang, Li, 2024. "Hierarchical condition-based maintenance planning for corrosion process considering natural environmental impact," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Beal, John & Reihani, Seyed & Sakurahara, Tatsuya & Kee, Ernie & Mohaghegh, Zahra, 2025. "Modeling nuclear power plant piping reliability by coupling a human reliability analysis-based maintenance model with a physical degradation model," Reliability Engineering and System Safety, Elsevier, vol. 255(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Yi & Zhao, Xiujie & Liu, Bin & He, Shuguang, 2024. "Condition-based maintenance policy for systems under dynamic environment," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    2. Azizi, Fariba & Salari, Nooshin, 2023. "A novel condition-based maintenance framework for parallel manufacturing systems based on bivariate birth/birth–death processes," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Mosayebi Omshi, E. & Grall, A., 2021. "Replacement and imperfect repair of deteriorating system: Study of a CBM policy and impact of repair efficiency," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Zhang, Qin & Liu, Yu & Xiang, Yisha & Xiahou, Tangfan, 2024. "Reinforcement learning in reliability and maintenance optimization: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    5. Liu, Gehui & Chen, Shaokuan & Ho, Tinkin & Ran, Xinchen & Mao, Baohua & Lan, Zhen, 2022. "Optimum opportunistic maintenance schedule over variable horizons considering multi-stage degradation and dynamic strategy," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Zhang, Nan & Cai, Kaiquan & Zhang, Jun & Wang, Tian, 2022. "A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    7. Wang, Weikai & Chen, Xian, 2023. "Piecewise deterministic Markov process for condition-based imperfect maintenance models," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    8. Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    9. Lee, Juseong & Mitici, Mihaela, 2023. "Deep reinforcement learning for predictive aircraft maintenance using probabilistic Remaining-Useful-Life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Karabağ, Oktay & Bulut, Önder & Toy, Ayhan Özgür & Fadıloğlu, Mehmet Murat, 2024. "An efficient procedure for optimal maintenance intervention in partially observable multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    11. Mai, Yuxi & Xue, Jianwu & Wu, Bei, 2023. "Optimal maintenance policy for systems with environment-modulated degradation and random shocks considering imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    12. Mikhail, Mina & Ouali, Mohamed-Salah & Yacout, Soumaya, 2024. "A data-driven methodology with a nonparametric reliability method for optimal condition-based maintenance strategies," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    13. Zhang, Wenyu & Zhang, Xiaohong & He, Shuguang & Zhao, Xing & He, Zhen, 2024. "Optimal condition-based maintenance policy for multi-component repairable systems with economic dependence in a finite-horizon," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. Mosayebi Omshi, E. & Shemehsavar, S. & Grall, A., 2024. "An intelligent maintenance policy for a latent degradation system," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    15. Huynh, K.T. & Vu, H.C. & Nguyen, T.D. & Ho, A.C., 2022. "A predictive maintenance model for k-out-of-n:F continuously deteriorating systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    16. Zhang, Fengxia & Liao, Haitao & Shen, Jingyuan & Ma, Yizhong, 2024. "Optimal maintenance over a finite time horizon for a system under imperfect inspection and dynamic working environment," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    17. Wang, Yukun & Li, Xiaopeng & Chen, Junyan & Liu, Yiliu, 2022. "A condition-based maintenance policy for multi-component systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    18. Azar, Kamyar & Hajiakhondi-Meybodi, Zohreh & Naderkhani, Farnoosh, 2022. "Semi-supervised clustering-based method for fault diagnosis and prognosis: A case study," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    19. Ma, Weining & Zhang, Qin & Xiahou, Tangfan & Liu, Yu & Jia, Xisheng, 2023. "Integrated selective maintenance and task assignment optimization for multi-state systems executing multiple missions," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    20. Deep, Akash & Zhou, Shiyu & Veeramani, Dharmaraj & Chen, Yong, 2023. "Partially observable Markov decision process-based optimal maintenance planning with time-dependent observations," European Journal of Operational Research, Elsevier, vol. 311(2), pages 533-544.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:240:y:2023:i:c:s0951832023004957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.