IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v246y2024ics0951832024001315.html
   My bibliography  Save this article

Optimal maintenance over a finite time horizon for a system under imperfect inspection and dynamic working environment

Author

Listed:
  • Zhang, Fengxia
  • Liao, Haitao
  • Shen, Jingyuan
  • Ma, Yizhong

Abstract

Inspections play a crucial role in determining the state of a system and informing timely maintenance decisions. However, due to the limitations of adopted inspection technologies, inspection errors are often inevitable. More importantly, the likelihood of such errors is often influenced by the system's working environment that varies over time and space. Despite this, most studies on imperfect inspections largely overlook the effects of such dynamic working environments on inspection errors. To address this gap, this paper proposes a maintenance policy accounting for imperfect inspections for a degrading system with hidden failures under a dynamic working environment. We develop two models based on a recursive method. The first model examines a case where the working environment affects only inspection errors, whereas the second one accounts for its impact on both inspection errors and the system's degradation process. Our focus is to determine the optimal interval and number of inspections that minimize the expected maintenance cost over a finite time horizon. Numerical examples are provided to illustrate the proposed method to ensure the effectiveness of maintenance actions. The optimization outcomes not only offer a valuable tool for engineers seeking to reduce maintenance costs but also shed light on broader managerial implications.

Suggested Citation

  • Zhang, Fengxia & Liao, Haitao & Shen, Jingyuan & Ma, Yizhong, 2024. "Optimal maintenance over a finite time horizon for a system under imperfect inspection and dynamic working environment," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024001315
    DOI: 10.1016/j.ress.2024.110057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024001315
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jones, B. & Jenkinson, I. & Wang, J., 2009. "Methodology of using delay-time analysis for a manufacturing industry," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 111-124.
    2. Mercier, Sophie & Pham, Hai Ha, 2012. "A preventive maintenance policy for a continuously monitored system with correlated wear indicators," European Journal of Operational Research, Elsevier, vol. 222(2), pages 263-272.
    3. Akcay, Alp, 2022. "An alert-assisted inspection policy for a production process with imperfect condition signals," European Journal of Operational Research, Elsevier, vol. 298(2), pages 510-525.
    4. Cavalcante, C.A.V. & Lopes, R.S. & Scarf, P.A., 2018. "A general inspection and opportunistic replacement policy for one-component systems of variable quality," European Journal of Operational Research, Elsevier, vol. 266(3), pages 911-919.
    5. Liu, Bin & Pandey, Mahesh D. & Wang, Xiaolin & Zhao, Xiujie, 2021. "A finite-horizon condition-based maintenance policy for a two-unit system with dependent degradation processes," European Journal of Operational Research, Elsevier, vol. 295(2), pages 705-717.
    6. Moshe Eben-Chaime, 2022. "On the relationships between the design of assembly manufacturing and inspection systems and product quality," IISE Transactions, Taylor & Francis Journals, vol. 54(3), pages 227-237, March.
    7. Yang, Li & Ye, Zhi-sheng & Lee, Chi-Guhn & Yang, Su-fen & Peng, Rui, 2019. "A two-phase preventive maintenance policy considering imperfect repair and postponed replacement," European Journal of Operational Research, Elsevier, vol. 274(3), pages 966-977.
    8. Yu Liu & Jian Gao & Tao Jiang & Zhiguo Zeng, 2023. "Selective maintenance and inspection optimization for partially observable systems: An interactively sequential decision framework," IISE Transactions, Taylor & Francis Journals, vol. 55(5), pages 463-479, May.
    9. Driessen, J.P.C. & Peng, H. & van Houtum, G.J., 2017. "Maintenance optimization under non-constant probabilities of imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 115-123.
    10. Maliheh Aramon Bajestani & Dragan Banjevic, 2016. "Calendar-based age replacement policy with dependent renewal cycles," IISE Transactions, Taylor & Francis Journals, vol. 48(11), pages 1016-1026, November.
    11. Hu, Jiawen & Jiang, Zuhua & Liao, Haitao, 2017. "Preventive maintenance of a single machine system working under piecewise constant operating condition," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 105-115.
    12. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    13. Alp Akcay & Engin Topan & Geert-Jan van Houtum, 2021. "Machine tools with hidden defects: Optimal usage for maximum lifetime value," IISE Transactions, Taylor & Francis Journals, vol. 53(1), pages 74-87, January.
    14. Scarf, P.A. & Cavalcante, C.A.V. & Lopes, R.S., 2019. "Delay-time modelling of a critical system subject to random inspections," European Journal of Operational Research, Elsevier, vol. 278(3), pages 772-782.
    15. Wang, Jiantai & Zhou, Shihan & Peng, Rui & Qiu, Qingan & Yang, Li, 2023. "An inspection-based replacement planning in consideration of state-driven imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    16. Nakagawa, T. & Mizutani, S., 2009. "A summary of maintenance policies for a finite interval," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 89-96.
    17. Zhicheng Zhu & Yisha Xiang, 2021. "Condition-based maintenance for multi-component systems: Modeling, structural properties, and algorithms," IISE Transactions, Taylor & Francis Journals, vol. 53(1), pages 88-100, January.
    18. Sharareh Taghipour & Dragan Banjevic, 2012. "Optimum inspection interval for a system under periodic and opportunistic inspections," IISE Transactions, Taylor & Francis Journals, vol. 44(11), pages 932-948.
    19. Wang, Wenbin, 2012. "An overview of the recent advances in delay-time-based maintenance modelling," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 165-178.
    20. Zhang, Fengxia & Shen, Jingyuan & Liao, Haitao & Ma, Yizhong, 2021. "Optimal preventive maintenance policy for a system subject to two-phase imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    21. Liu, Gehui & Chen, Shaokuan & Jin, Hua & Liu, Shuang, 2021. "Optimum opportunistic maintenance schedule incorporating delay time theory with imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    22. Jingyuan Shen & Lirong Cui, 2016. "Reliability performance for dynamic systems with cycles of regimes," IISE Transactions, Taylor & Francis Journals, vol. 48(4), pages 389-402, April.
    23. Javad Asadkhani & Hadi Mokhtari & Saman Tahmasebpoor, 2022. "Optimal lot-sizing under learning effect in inspection errors with different types of imperfect quality items," Operational Research, Springer, vol. 22(3), pages 2631-2665, July.
    24. Fei Zhao & Wenbin Wang & Rui Peng, 2015. "Delay-time-based preventive maintenance modelling for a production plant: a case study in a steel mill," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(12), pages 2015-2024, December.
    25. Wang, Jiaxi, 2024. "Maintenance scheduling at high-speed train depots: An optimization approach," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    26. Peng, Rui & He, Xiaofeng & Zhong, Chao & Kou, Gang & Xiao, Hui, 2022. "Preventive maintenance for heterogeneous parallel systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    27. Nan Zhang & Sen Tian & Kaiquan Cai & Jun Zhang, 2023. "Condition-based maintenance assessment for a deteriorating system considering stochastic failure dependence," IISE Transactions, Taylor & Francis Journals, vol. 55(7), pages 687-697, July.
    28. Joachim Arts & Rob Basten, 2018. "Design of multi-component periodic maintenance programs with single-component models," IISE Transactions, Taylor & Francis Journals, vol. 50(7), pages 606-615, July.
    29. Tian, Zhigang & Zhang, Han, 2022. "Wind farm predictive maintenance considering component level repairs and economic dependency," Renewable Energy, Elsevier, vol. 192(C), pages 495-506.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dui, Hongyan & Wang, Xinyue & Dong, Xinghui & Zhu, Tianmeng & Zhai, Yunkai, 2024. "Reliability model and emergency maintenance strategies for smart home systems," Reliability Engineering and System Safety, Elsevier, vol. 251(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akcay, Alp, 2022. "An alert-assisted inspection policy for a production process with imperfect condition signals," European Journal of Operational Research, Elsevier, vol. 298(2), pages 510-525.
    2. Wang, Jiantai & Ma, Xiaobing & Yang, Li & Qiu, Qingan & Shang, Lijun & Wang, Jingjing, 2024. "A hybrid inspection-replacement policy for multi-stage degradation considering imperfect inspection with variable probabilities," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Wang, Jiantai & Longyan, Tan & Ma, Xiaobing & Gao, Kaiye & Jia, Heping & Yang, Li, 2023. "Prognosis-driven reliability analysis and replacement policy optimization for two-phase continuous degradation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    5. Santos, Augusto César de Jesus & Cavalcante, Cristiano Alexandre Virgínio, 2022. "A study on the economic and environmental viability of second-hand items in maintenance policies," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Kivanç, İpek & Fecarotti, Claudia & Raassens, Néomie & van Houtum, Geert-Jan, 2024. "A scalable multi-objective maintenance optimization model for systems with multiple heterogeneous components and a finite lifespan," European Journal of Operational Research, Elsevier, vol. 315(2), pages 567-579.
    7. Ning, Ru & Wang, Xiaoyue & Zhao, Xian & Li, Ziyue, 2024. "Joint optimization of preventive maintenance and triggering mechanism for k-out-of-n: F systems with protective devices based on periodic inspection," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    8. Sinisterra, Wilfrido Quiñones & Lima, Victor Hugo Resende & Cavalcante, Cristiano Alexandre Virginio & Aribisala, Adetoye Ayokunle, 2023. "A delay-time model to integrate the sequence of resumable jobs, inspection policy, and quality for a single-component system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Yang, Li & Ye, Zhi-sheng & Lee, Chi-Guhn & Yang, Su-fen & Peng, Rui, 2019. "A two-phase preventive maintenance policy considering imperfect repair and postponed replacement," European Journal of Operational Research, Elsevier, vol. 274(3), pages 966-977.
    10. Wang, Jiantai & Zhou, Shihan & Peng, Rui & Qiu, Qingan & Yang, Li, 2023. "An inspection-based replacement planning in consideration of state-driven imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    11. Rodrigues, Augusto J.S. & Cavalcante, Cristiano A.V. & Lee, Chi-Guhn, 2024. "A general inspection and replacement policy for protection systems subject to shocks with state dependent effect," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    12. Seyedhosseini, Seyed Mohammad & Moakedi, Hamid & Shahanaghi, Kamran, 2018. "Imperfect inspection optimization for a two-component system subject to hidden and two-stage revealed failures over a finite time horizon," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 141-156.
    13. Cavalcante, Cristiano A.V. & Lopes, Rodrigo S. & Scarf, Philip A., 2021. "Inspection and replacement policy with a fixed periodic schedule," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    14. Peng, Rui & He, Xiaofeng & Zhong, Chao & Kou, Gang & Xiao, Hui, 2022. "Preventive maintenance for heterogeneous parallel systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    15. Sinisterra, Wilfrido Quiñones & Cavalcante, Cristiano Alexandre Virgínio, 2020. "An integrated model of production scheduling and inspection planning for resumable jobs," International Journal of Production Economics, Elsevier, vol. 227(C).
    16. Azizi, Fariba & Salari, Nooshin, 2023. "A novel condition-based maintenance framework for parallel manufacturing systems based on bivariate birth/birth–death processes," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    17. Zhang, Fengxia & Shen, Jingyuan & Liao, Haitao & Ma, Yizhong, 2021. "Optimal preventive maintenance policy for a system subject to two-phase imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    18. Liu, Gehui & Chen, Shaokuan & Ho, Tinkin & Ran, Xinchen & Mao, Baohua & Lan, Zhen, 2022. "Optimum opportunistic maintenance schedule over variable horizons considering multi-stage degradation and dynamic strategy," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    19. Azimpoor, Samareh & Taghipour, Sharareh, 2021. "Joint inspection and product quality optimization for a system with delayed failure," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    20. da Costa, Paulo & Verleijsdonk, Peter & Voorberg, Simon & Akcay, Alp & Kapodistria, Stella & van Jaarsveld, Willem & Zhang, Yingqian, 2023. "Policies for the dynamic traveling maintainer problem with alerts," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1141-1152.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024001315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.