IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v192y2022icp495-506.html
   My bibliography  Save this article

Wind farm predictive maintenance considering component level repairs and economic dependency

Author

Listed:
  • Tian, Zhigang
  • Zhang, Han

Abstract

Existing studies on wind farm predictive maintenance mostly incorporated repairs on the level of wind turbine (WT) subassemblies, e.g. drive train, gearbox and generator, including major repairs and minor repairs. The economic dependency among subassemblies was also considered. But assumptions needed to be made on major and minor repairs regarding their costs and impact on system functions. Besides, existing studies considered only fixed costs on the WT and farm levels without differentiating fixed costs that apply to a subset of components, such as crane costs, resulting in over-simplification compared to wind farm practices. In this work, a wind farm predictive maintenance approach is developed considering component level repairs and economic dependency. There are multiple components in a subassembly, e.g. the generator consists of components like generator rotor, generator bearings, contactor, etc. These components' failures lead to major or minor repairs, downtime, and demand on repair resources, particularly cranes. With the proposed wind farm predictive maintenance approach, component level major and minor repairs and their costs can be modeled explicitly in a more realistic and accurate way. Economic dependency can also be modeled more accurately by incorporating the downtime, i.e. revenue loss, and repair resource requirement caused by different component failures. A predictive maintenance optimization model is developed to find the optimal maintenance policy. The number of WTs eligible for preventive maintenance is introduced as a new decision variable, which also captures the economic dependency among WTs. A simulation-based method is developed for maintenance cost evaluation. Examples are used to demonstrate the proposed approach.

Suggested Citation

  • Tian, Zhigang & Zhang, Han, 2022. "Wind farm predictive maintenance considering component level repairs and economic dependency," Renewable Energy, Elsevier, vol. 192(C), pages 495-506.
  • Handle: RePEc:eee:renene:v:192:y:2022:i:c:p:495-506
    DOI: 10.1016/j.renene.2022.04.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122005213
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Zhigang & Zuo, Ming J., 2006. "Redundancy allocation for multi-state systems using physical programming and genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1049-1056.
    2. Rommert Dekker & Ralph Wildeman & Frank Duyn Schouten, 1997. "A review of multi-component maintenance models with economic dependence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 45(3), pages 411-435, October.
    3. Shafiee, Mahmood & Finkelstein, Maxim & Bérenguer, Christophe, 2015. "An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 463-471.
    4. Ding, Fangfang & Tian, Zhigang, 2012. "Opportunistic maintenance for wind farms considering multi-level imperfect maintenance thresholds," Renewable Energy, Elsevier, vol. 45(C), pages 175-182.
    5. Zhu, Wenjin & Fouladirad, Mitra & Bérenguer, Christophe, 2016. "A multi-level maintenance policy for a multi-component and multifailure mode system with two independent failure modes," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 50-63.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
    2. Hongyan Dui & Yulu Zhang & Yun-An Zhang, 2023. "Grouping Maintenance Policy for Improving Reliability of Wind Turbine Systems Considering Variable Cost," Mathematics, MDPI, vol. 11(8), pages 1-20, April.
    3. Kristjanpoller, Fredy & Cárdenas-Pantoja, Nicolás & Viveros, Pablo & Pascual, Rodrigo, 2023. "Wind farm life cycle cost modelling based on oversizing capacity under load sharing configuration," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    4. Zheng, Meimei & Su, Zhiyun & Wang, Dong & Pan, Ershun, 2024. "Joint maintenance and spare part ordering from multiple suppliers for multicomponent systems using a deep reinforcement learning algorithm," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Xue Zhou & Yajian Ke & Jianhui Zhu & Weiwei Cui, 2023. "Sustainable Operation and Maintenance of Offshore Wind Farms Based on the Deep Wind Forecasting," Sustainability, MDPI, vol. 16(1), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    2. Zhang, Xiaohong & Zeng, Jianchao, 2017. "Joint optimization of condition-based opportunistic maintenance and spare parts provisioning policy in multiunit systems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 479-498.
    3. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    4. Juan Izquierdo & Adolfo Crespo Márquez & Jone Uribetxebarria & Asier Erguido, 2019. "Framework for Managing Maintenance of Wind Farms Based on a Clustering Approach and Dynamic Opportunistic Maintenance," Energies, MDPI, vol. 12(11), pages 1-17, May.
    5. Vu, Hai Canh & Do, Phuc & Fouladirad, Mitra & Grall, Antoine, 2020. "Dynamic opportunistic maintenance planning for multi-component redundant systems with various types of opportunities," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    6. Erguido, A. & Crespo Márquez, A. & Castellano, E. & Gómez Fernández, J.F., 2017. "A dynamic opportunistic maintenance model to maximize energy-based availability while reducing the life cycle cost of wind farms," Renewable Energy, Elsevier, vol. 114(PB), pages 843-856.
    7. Zhu, Wenjin & Castanier, Bruno & Bettayeb, Belgacem, 2019. "A dynamic programming-based maintenance model of offshore wind turbine considering logistic delay and weather condition," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    8. Zhicheng Zhu & Yisha Xiang & Bo Zeng, 2021. "Multicomponent Maintenance Optimization: A Stochastic Programming Approach," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 898-914, July.
    9. Liu, Xinbao & Yang, Tianji & Pei, Jun & Liao, Haitao & Pohl, Edward A., 2019. "Replacement and inventory control for a multi-customer product service system with decreasing replacement costs," European Journal of Operational Research, Elsevier, vol. 273(2), pages 561-574.
    10. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    11. Zhu, Wenjin & Fouladirad, Mitra & Bérenguer, Christophe, 2016. "A multi-level maintenance policy for a multi-component and multifailure mode system with two independent failure modes," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 50-63.
    12. Tazi, Nacef & Châtelet, Eric & Bouzidi, Youcef, 2018. "How combined performance and propagation of failure dependencies affect the reliability of a MSS," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 531-541.
    13. Li Yang & Yu Zhao & Xiaobing Ma & Qingan Qiu, 2018. "An optimal inspection and replacement policy for a two-unit system," Journal of Risk and Reliability, , vol. 232(6), pages 766-776, December.
    14. Nguyen, Thi-Anh-Tuyet & Chou, Shuo-Yan & Yu, Tiffany Hui-Kuang, 2022. "Developing an exhaustive optimal maintenance schedule for offshore wind turbines based on risk-assessment, technical factors and cost-effective evaluation," Energy, Elsevier, vol. 249(C).
    15. Shafiee, Mahmood & Sørensen, John Dalsgaard, 2019. "Maintenance optimization and inspection planning of wind energy assets: Models, methods and strategies," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    16. Dui, Hongyan & Tian, Tianzi & Wu, Shaomin & Xie, Min, 2023. "A cost-informed component maintenance index and its applications," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    17. Wang, Jingjing & Qiu, Qingan & Wang, Huanhuan, 2021. "Joint optimization of condition-based and age-based replacement policy and inventory policy for a two-unit series system," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    18. Zhou, Xiaojun & Yu, Mengqi, 2020. "Semi-dynamic maintenance scheduling for multi-station series systems in multi-specification and small-batch production," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    19. McMorland, J. & Collu, M. & McMillan, D. & Carroll, J. & Coraddu, A., 2023. "Opportunistic maintenance for offshore wind: A review and proposal of future framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    20. Wang, Jinhe & Zhang, Xiaohong & Zeng, Jianchao & Zhang, Yunzheng, 2020. "Joint external and internal opportunistic optimisation for wind turbine considering wind velocity," Renewable Energy, Elsevier, vol. 159(C), pages 380-398.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:192:y:2022:i:c:p:495-506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.