IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics095183202300738x.html
   My bibliography  Save this article

Analysis of variable system cost and maintenance strategy in life cycle considering different failure modes

Author

Listed:
  • Dui, Hongyan
  • Zhang, Yulu
  • Bai, Guanghan

Abstract

Due to the complexity of multi-component systems, components failure modes are intricate. The failure modes lead to maintenance behavior combinations, which lead to a series of maintenance strategies. However, the failure modes of components are mixed in multi-component systems. Few researchers provide component failure modes comprehensively in life cycle, and integrate them into life cycle maintenance strategies for the selection schemes of different phases. In this paper, a variable system cost methodology in life cycle is studied, and maintenance strategies are developed by identifying components failure modes from a life cycle perspective to improve system reliability. One of the keys is determining maintenance behaviors for components in each phase of life cycle. The proposed four failure modes cover all possible failure scenarios of the components in different phases. Then, a selection scheme is developed to determine maintenance behaviors in life cycle. At last, a case of Huaneng wind farm in China is given to demonstrate the proposed method by comparing with a baseline maintenance strategy.

Suggested Citation

  • Dui, Hongyan & Zhang, Yulu & Bai, Guanghan, 2024. "Analysis of variable system cost and maintenance strategy in life cycle considering different failure modes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s095183202300738x
    DOI: 10.1016/j.ress.2023.109824
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202300738X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109824?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ait Mokhtar, El Hassene & Laggoune, Radouane & Chateauneuf, Alaa, 2023. "Imperfect maintenance modeling and assessment of repairable multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Wang, Jia & Li, Zhigang & Bai, Guanghan & Zuo, Ming J., 2020. "An improved model for dependent competing risks considering continuous degradation and random shocks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Pablo Viveros & Marco Espinoza & Rodrigo Mena & Fredy Kristjanpoller & Yu Zhou, 2023. "Extended Framework for Preventive Maintenance Planning: Risk and Behaviour Analysis of a Proposed Optimization Model," Complexity, Hindawi, vol. 2023, pages 1-22, February.
    4. Yeter, B. & Garbatov, Y. & Guedes Soares, C., 2020. "Risk-based maintenance planning of offshore wind turbine farms," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    5. Wang, Xiaoyue & Ning, Ru & Zhao, Xian & Wu, Congshan, 2023. "Reliability assessments for two types of balanced systems with multi-state protective devices," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Levitin, Gregory & Xing, Liudong & Xiang, Yanping, 2021. "Optimal multiple replacement and maintenance scheduling in two-unit systems," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    7. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    8. Dui, Hongyan & Tian, Tianzi & Wu, Shaomin & Xie, Min, 2023. "A cost-informed component maintenance index and its applications," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Yan, Rundong & Dunnett, Sarah & Jackson, Lisa, 2023. "Impact of condition monitoring on the maintenance and economic viability of offshore wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    10. Zhang, Chao & Chen, Rentong & Wang, Shaoping & Dui, Hongyan & Zhang, Yadong, 2022. "Resilience efficiency importance measure for the selection of a component maintenance strategy to improve system performance recovery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. Yikai Ma & Wenjuan Zhang & Juergen Branke, 2023. "Multi-objective optimisation of multifaceted maintenance strategies for wind farms," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 74(5), pages 1362-1377, May.
    12. Wang, Liying & Song, Yushuang & Zhang, Wenhua & Ling, Xiaoliang, 2023. "Condition-based inspection, component reallocation and replacement optimization of two-component interchangeable series system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    13. Zhao, Yixin & Cozzani, Valerio & Sun, Tianqi & Vatn, Jørn & Liu, Yiliu, 2023. "Condition-based maintenance for a multi-component system subject to heterogeneous failure dependences," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    14. Chen, Zhaoxiang & Chen, Zhen & Zhou, Di & Pan, Ershun, 2023. "Energy-oriented opportunistic maintenance optimization of continuous process manufacturing systems with two types of stochastic durations," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2023. "A closed-loop maintenance strategy for offshore wind farms: Incorporating dynamic wind farm states and uncertainty-awareness in decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    16. Levitin, Gregory & Finkelstein, Maxim & Li, Yan-Feng, 2020. "Balancing mission success probability and risk of system loss by allocating redundancy in systems operating with a rescue option," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    17. Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-An & Fang, Yining & Xu, Bei, 2022. "Modeling and evaluation method for resilience analysis of multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    18. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Mission abort policy balancing the uncompleted mission penalty and system loss risk," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 194-201.
    19. Zhang, Chengjie & Qi, Faqun & Zhang, Ning & Li, Yong & Huang, Hongzhong, 2022. "Maintenance policy optimization for multi-component systems considering dynamic importance of components," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    20. Dui, Hongyan & Zheng, Xiaoqian & Wu, Shaomin, 2021. "Resilience analysis of maritime transportation systems based on importance measures," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    21. Radim Briš & Pavel Jahoda, 2022. "Really Ageing Systems Undergoing a Discrete Maintenance Optimization," Mathematics, MDPI, vol. 10(16), pages 1-17, August.
    22. Tian, Zhigang & Zhang, Han, 2022. "Wind farm predictive maintenance considering component level repairs and economic dependency," Renewable Energy, Elsevier, vol. 192(C), pages 495-506.
    23. Zhang, Nan & Cai, Kaiquan & Zhang, Jun & Wang, Tian, 2022. "A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    24. Wu, Shaomin & Coolen, Frank P.A., 2013. "A cost-based importance measure for system components: An extension of the Birnbaum importance," European Journal of Operational Research, Elsevier, vol. 225(1), pages 189-195.
    25. Saleh, Ali & Chiachío, Manuel & Salas, Juan Fernández & Kolios, Athanasios, 2023. "Self-adaptive optimized maintenance of offshore wind turbines by intelligent Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    26. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Minimizing mission cost for production system with unreliable storage," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    27. Wang, Siqi & Zhao, Xian & Wu, Congshan & Wang, Xiaoyue, 2023. "Joint optimization of multi-stage component reassignment and preventive maintenance for balanced systems considering imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Xiaojun & Cui, Lirong & Wang, Ruiting, 2024. "Non-renewable warranty cost analysis for dependent series configuration with distinct warranty periods," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    2. Wu, Bin & Zhang, Xiaohong & Shi, Hui & Zeng, Jianchao, 2024. "Failure mode division and remaining useful life prognostics of multi-indicator systems with multi-fault," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongyan Dui & Yulu Zhang & Yun-An Zhang, 2023. "Grouping Maintenance Policy for Improving Reliability of Wind Turbine Systems Considering Variable Cost," Mathematics, MDPI, vol. 11(8), pages 1-20, April.
    2. Chen, Liwei & Cheng, Chunchun & Dui, Hongyan & Xing, Liudong, 2022. "Maintenance cost-based importance analysis under different maintenance strategies," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    3. Dui, Hongyan & Zhang, Chi & Tian, Tianzi & Wu, Shaomin, 2022. "Different costs-informed component preventive maintenance with system lifetime changes," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Dui, Hongyan & Tian, Tianzi & Wu, Shaomin & Xie, Min, 2023. "A cost-informed component maintenance index and its applications," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Qi, Faqun & Huang, Meiqi, 2024. "Joint optimization of maintenance and spares inventory policy for a series-parallel system considering dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    6. Kristjanpoller, Fredy & Cárdenas-Pantoja, Nicolás & Viveros, Pablo & Pascual, Rodrigo, 2023. "Wind farm life cycle cost modelling based on oversizing capacity under load sharing configuration," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    7. Dui, Hongyan & Lu, Yaohui & Chen, Liwei, 2024. "Importance-based system cost management and failure risk analysis for different phases in life cycle," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    8. Liang, Xiaojun & Cui, Lirong & Wang, Ruiting, 2024. "Non-renewable warranty cost analysis for dependent series configuration with distinct warranty periods," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    9. Zhang, Wenyu & Gan, Jie & He, Shuguang & Li, Ting & He, Zhen, 2024. "An integrated framework of preventive maintenance and task scheduling for repairable multi-unit systems," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    10. Liu, Mingli & Wang, Dan & Si, Shubin, 2024. "Solving algorithm design for the cost minimization reliability optimization model driven by a novel cost-based importance measure," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    11. Dui, Hongyan & Zhu, Yawen & Tao, Junyong, 2024. "Multi-phased resilience methodology of urban sewage treatment network based on the phase and node recovery importance in IoT," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    12. Fang, Chen & Chen, Jianhui & Qiu, Daizhen, 2024. "Reliability modeling for balanced systems considering mission abort policies," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    13. Liu, Mingli & Wang, Dan & Zhao, Jiangbin & Si, Shubin, 2022. "Importance measure construction and solving algorithm oriented to the cost-constrained reliability optimization model," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    14. Levitin, Gregory & Xing, Liudong & Xiang, Yanping & Dai, Yuanshun, 2021. "Mixed failure-driven and shock-driven mission aborts in heterogeneous systems with arbitrary structure," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    15. Zhou, Xinxin & Huang, Yun & Bai, Guanghan & Xu, Bei & Tao, Junyong, 2024. "The resilience evaluation of unmanned autonomous swarm with informed agents under partial failure," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    16. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    17. Li, Hongxu & Sun, Qin & Zhong, Yuanfu & Huang, Zhiwen & Zhang, Yingchao, 2023. "A soft resource optimization method for improving the resilience of UAV swarms under continuous attack," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    18. Liu, Lujie & Yang, Jun & Yan, Bingxin, 2024. "A dynamic mission abort policy for transportation systems with stochastic dependence by deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    19. Chen, Rentong & Zhang, Chao & Wang, Shaoping & Zio, Enrico & Dui, Hongyan & Zhang, Yadong, 2023. "Importance measures for critical components in complex system based on Copula Hierarchical Bayesian Network," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    20. Dui, Hongyan & Liu, Meng & Song, Jiaying & Wu, Shaomin, 2023. "Importance measure-based resilience management: Review, methodology and perspectives on maintenance," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s095183202300738x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.