IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v256y2025ics0951832024007725.html
   My bibliography  Save this article

An integrated condition-based opportunistic maintenance framework for offshore wind farms

Author

Listed:
  • Luo, Jiaxuan
  • Luo, Xiaofang
  • Ma, Xiandong
  • Zan, Yingfei
  • Bai, Xu

Abstract

The maintenance strategies commonly used in offshore wind farms may lead to under-maintenance or over-maintenance activities. To address this issue, this paper proposes an integrated condition-based opportunistic maintenance (CBOM) framework for the offshore wind farm, to balance the maintenance cost and component condition. Component health index (HI) is calculated based on the P-F (potential failure to functional failure) intervals to divide the component health stages, and the component type with the highest proportion in the operation and maintenance (O&M) cost is selected to determine the maintenance time window for multiple components. A maintenance priority index (PI) is calculated by the data envelopment analysis method (DEA) to determine the maintenance mode and sequence of individual components. The component with the lowest maintenance cost rate is selected by an exhaustive search algorithm (ESA) to reduce the total O&M cost in one maintenance action. Finally, a case study is carried out to demonstrate the feasibility of the proposed framework with the specific calculation process, and a comparison analysis is given. The results show that the proposed framework is an effective method for balancing the O&M cost against condition for the offshore wind farms.

Suggested Citation

  • Luo, Jiaxuan & Luo, Xiaofang & Ma, Xiandong & Zan, Yingfei & Bai, Xu, 2025. "An integrated condition-based opportunistic maintenance framework for offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024007725
    DOI: 10.1016/j.ress.2024.110701
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024007725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110701?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmad Abdullah & Shantanu Saraswat & Faisal Talib, 2023. "Impact of Smart, Green, Resilient, and Lean Manufacturing System on SMEs’Performance: A Data Envelopment Analysis (DEA) Approach," Sustainability, MDPI, vol. 15(2), pages 1-26, January.
    2. Zhang, Chen & Gao, Wei & Yang, Tao & Guo, Sheng, 2019. "Opportunistic maintenance strategy for wind turbines considering weather conditions and spare parts inventory management," Renewable Energy, Elsevier, vol. 133(C), pages 703-711.
    3. He, Rui & Tian, Zhigang & Wang, Yifei & Zuo, Mingjian & Guo, Ziwei, 2023. "Condition-based maintenance optimization for multi-component systems considering prognostic information and degraded working efficiency," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Chen, Yuan & Qiu, Qingan & Zhao, Xian, 2022. "Condition-based opportunistic maintenance policies with two-phase inspections for continuous-state systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Nielsen, Jannie Jessen & Sørensen, John Dalsgaard, 2011. "On risk-based operation and maintenance of offshore wind turbine components," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 218-229.
    6. Houda Ghamlouch & Mitra Fouladirad & Antoine Grall, 2019. "The use of real option in condition-based maintenance scheduling for wind turbines with production and deterioration uncertainties," Post-Print hal-02365402, HAL.
    7. Saleh, Ali & Chiachío, Manuel & Salas, Juan Fernández & Kolios, Athanasios, 2023. "Self-adaptive optimized maintenance of offshore wind turbines by intelligent Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Ghamlouch, Houda & Fouladirad, Mitra & Grall, Antoine, 2019. "The use of real option in condition-based maintenance scheduling for wind turbines with production and deterioration uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 614-623.
    9. Li, Heping & Zhu, Wenjin & Dieulle, Laurence & Deloux, Estelle, 2022. "Condition-based maintenance strategies for stochastically dependent systems using Nested Lévy copulas," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Zhu, Wenjin & Castanier, Bruno & Bettayeb, Belgacem, 2019. "A dynamic programming-based maintenance model of offshore wind turbine considering logistic delay and weather condition," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    11. Shafiee, Mahmood & Finkelstein, Maxim & Bérenguer, Christophe, 2015. "An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 463-471.
    12. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    13. Shafiee, Mahmood, 2015. "Maintenance logistics organization for offshore wind energy: Current progress and future perspectives," Renewable Energy, Elsevier, vol. 77(C), pages 182-193.
    14. Vincent F. Yu & Thi Huynh Anh Le & Tai-Sheng Su & Shih-Wei Lin, 2021. "Optimal Maintenance Policy for Offshore Wind Systems," Energies, MDPI, vol. 14(19), pages 1-19, September.
    15. Van Horenbeek, Adriaan & Van Ostaeyen, Joris & Duflou, Joost R. & Pintelon, Liliane, 2013. "Quantifying the added value of an imperfectly performing condition monitoring system—Application to a wind turbine gearbox," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 45-57.
    16. Luo, Yi & Zhao, Xiujie & Liu, Bin & He, Shuguang, 2024. "Condition-based maintenance policy for systems under dynamic environment," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    17. Shafiee, Mahmood & Sørensen, John Dalsgaard, 2019. "Maintenance optimization and inspection planning of wind energy assets: Models, methods and strategies," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    18. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2023. "A closed-loop maintenance strategy for offshore wind farms: Incorporating dynamic wind farm states and uncertainty-awareness in decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    19. Wang, Yifei & He, Rui & Tian, Zhigang, 2023. "Opportunistic condition-based maintenance optimization for electrical distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    20. Yeter, B. & Garbatov, Y. & Guedes Soares, C., 2020. "Risk-based maintenance planning of offshore wind turbine farms," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    21. Oakley, Jordan L. & Wilson, Kevin J. & Philipson, Pete, 2022. "A condition-based maintenance policy for continuously monitored multi-component systems with economic and stochastic dependence," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    22. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    23. Kui Wang & Chao Deng & Lili Ding, 2020. "Optimal Condition-Based Maintenance Strategy for Multi-Component Systems under Degradation Failures," Energies, MDPI, vol. 13(17), pages 1-12, August.
    24. Lu, Yaohui & Wang, Shaoping & Zhang, Chao & Chen, Rentong & Dui, Hongyan & Mu, Rui, 2024. "Adaptive maintenance window-based opportunistic maintenance optimization considering operational reliability and cost," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    25. Liu, Bin & Xu, Zhengguo & Xie, Min & Kuo, Way, 2014. "A value-based preventive maintenance policy for multi-component system with continuously degrading components," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 83-89.
    26. Mikhail, Mina & Ouali, Mohamed-Salah & Yacout, Soumaya, 2024. "A data-driven methodology with a nonparametric reliability method for optimal condition-based maintenance strategies," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    27. Yan, Rundong & Dunnett, Sarah & Jackson, Lisa, 2023. "Impact of condition monitoring on the maintenance and economic viability of offshore wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    28. Lagaros, Nikos D. & Karlaftis, Matthew G. & Paida, Maria K., 2015. "Stochastic life-cycle cost analysis of wind parks," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 117-127.
    29. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    30. McMorland, J. & Collu, M. & McMillan, D. & Carroll, J. & Coraddu, A., 2023. "Opportunistic maintenance for offshore wind: A review and proposal of future framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    31. Xu, Jun & Liang, Zhenglin & Li, Yan-Fu & Wang, Kaibo, 2021. "Generalized condition-based maintenance optimization for multi-component systems considering stochastic dependency and imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chen & Hu, Di & Yang, Tao, 2022. "Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Li, He & Teixeira, Angelo P. & Guedes Soares, C., 2020. "A two-stage Failure Mode and Effect Analysis of offshore wind turbines," Renewable Energy, Elsevier, vol. 162(C), pages 1438-1461.
    3. Dui, Hongyan & Zhang, Yulu & Bai, Guanghan, 2024. "Analysis of variable system cost and maintenance strategy in life cycle considering different failure modes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. McMorland, J. & Collu, M. & McMillan, D. & Carroll, J. & Coraddu, A., 2023. "Opportunistic maintenance for offshore wind: A review and proposal of future framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Tao, Zijian & Zhu, Ronghua & Hu, Jiajun & Wang, Mingchuan & Chen, Qinghai & Wang, Chizhong, 2025. "A novel hierarchical failure analysis approach targeting the operation and maintenance of floating offshore wind turbines," Renewable Energy, Elsevier, vol. 241(C).
    6. Pliego Marugán, Alberto & García Márquez, Fausto Pedro & Pinar Pérez, Jesús María, 2022. "A techno-economic model for avoiding conflicts of interest between owners of offshore wind farms and maintenance suppliers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Oh, So Young & Joung, Chanwoo & Lee, Seonghwan & Shim, Yoon-Bo & Lee, Dahun & Cho, Gyu-Eun & Jang, Juhyeong & Lee, In Yong & Park, Young-Bin, 2024. "Condition-based maintenance of wind turbine structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    8. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    11. Si, Guojin & Xia, Tangbin & Gebraeel, Nagi & Wang, Dong & Pan, Ershun & Xi, Lifeng, 2025. "Holistic opportunistic maintenance scheduling and routing for offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    12. Nguyen, Thi-Anh-Tuyet & Chou, Shuo-Yan & Yu, Tiffany Hui-Kuang, 2022. "Developing an exhaustive optimal maintenance schedule for offshore wind turbines based on risk-assessment, technical factors and cost-effective evaluation," Energy, Elsevier, vol. 249(C).
    13. Truong-Ba, Huy & Cholette, Michael E. & Rebello, Sinda & Kent, Geoff, 2024. "Joint planning of inspection, replacement, and component decommissioning for a series system with non-identically degrading components," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. Shafiee, Mahmood & Sørensen, John Dalsgaard, 2019. "Maintenance optimization and inspection planning of wind energy assets: Models, methods and strategies," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    15. Tang, Huakang & Wang, Honglei & Li, Chengjiang, 2025. "Time-varying cost modeling and maintenance strategy optimization of plateau wind turbines considering degradation states," Applied Energy, Elsevier, vol. 377(PA).
    16. Ahmed Raza & Vladimir Ulansky, 2019. "Optimal Preventive Maintenance of Wind Turbine Components with Imperfect Continuous Condition Monitoring," Energies, MDPI, vol. 12(19), pages 1-24, October.
    17. Cavalcante, Cristiano A.V. & Lopes, Rodrigo S. & Scarf, Philip A., 2021. "Inspection and replacement policy with a fixed periodic schedule," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    18. Jichuan Kang & Zihao Wang & C. Guedes Soares, 2020. "Condition-Based Maintenance for Offshore Wind Turbines Based on Support Vector Machine," Energies, MDPI, vol. 13(14), pages 1-17, July.
    19. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2024. "Operation and maintenance management for offshore wind farms integrating inventory control and health information," Renewable Energy, Elsevier, vol. 231(C).
    20. Qi, Faqun & Huang, Meiqi, 2024. "Joint optimization of maintenance and spares inventory policy for a series-parallel system considering dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:256:y:2025:i:c:s0951832024007725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.