IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v132y2014icp83-89.html
   My bibliography  Save this article

A value-based preventive maintenance policy for multi-component system with continuously degrading components

Author

Listed:
  • Liu, Bin
  • Xu, Zhengguo
  • Xie, Min
  • Kuo, Way

Abstract

A dynamic preventive maintenance policy for system with continuously degrading components is investigated in this paper. Different from traditional cost-centric preventive maintenance policy, our maintenance strategy is formulated from the value perspective. Component value is modelled as a function of component reliability distribution. Maintenance action is triggered whenever the system reliability drops below a certain threshold. Our policy mainly consists of two steps: (i) determine which component to maintain; (ii) determine to what degree the component should be maintained. In Step 1, we introduce the yield-cost importance to select the most important component. In Step 2, the optimal maintenance level is obtained by maximizing the net value of the maintenance action. Finally, numerical examples are given to illustrate the proposed policy.

Suggested Citation

  • Liu, Bin & Xu, Zhengguo & Xie, Min & Kuo, Way, 2014. "A value-based preventive maintenance policy for multi-component system with continuously degrading components," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 83-89.
  • Handle: RePEc:eee:reensy:v:132:y:2014:i:c:p:83-89
    DOI: 10.1016/j.ress.2014.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832014001422
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2014.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Samrout, M. & Châtelet, E. & Kouta, R. & Chebbo, N., 2009. "Optimization of maintenance policy using the proportional hazard model," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 44-52.
    2. Xiaoyan Zhu & Qingzhu Yao & Way Kuo, 2012. "Patterns of the Birnbaum importance in linear consecutive--out-of- systems," IISE Transactions, Taylor & Francis Journals, vol. 44(4), pages 277-290.
    3. Wu, Shaomin, 2012. "Assessing maintenance contracts when preventive maintenance is outsourced," Reliability Engineering and System Safety, Elsevier, vol. 98(1), pages 66-72.
    4. Zhou, Xiaojun & Lu, Zhiqiang & Xi, Lifeng, 2012. "Preventive maintenance optimization for a multi-component system under changing job shop schedule," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 14-20.
    5. Nahas, Nabil & Khatab, Abdelhakim & Ait-Kadi, Daoud & Nourelfath, Mustapha, 2008. "Extended great deluge algorithm for the imperfect preventive maintenance optimization of multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1658-1672.
    6. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    7. Xie, Min, 1987. "On some importance measures of system components," Stochastic Processes and their Applications, Elsevier, vol. 25, pages 273-280.
    8. Wang, Wenbin, 2013. "Models of inspection, routine service, and replacement for a serviceable one-component system," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 57-63.
    9. Cheng, Tianjin & Pandey, Mahesh D. & van der Weide, J.A.M., 2012. "The probability distribution of maintenance cost of a system affected by the gamma process of degradation: Finite time solution," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 65-76.
    10. Nourelfath, Mustapha & Ait-Kadi, Daoud, 2007. "Optimization of series–parallel multi-state systems under maintenance policies," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1620-1626.
    11. Gwo-Liang Liao, 2013. "Optimal economic production quantity policy for randomly failing process with minimal repair, backorder and preventive maintenance," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(9), pages 1602-1612.
    12. Rosqvist, T. & Laakso, K. & Reunanen, M., 2009. "Value-driven maintenance planning for a production plant," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 97-110.
    13. Ye, Zhi-Sheng & Shen, Yan & Xie, Min, 2012. "Degradation-based burn-in with preventive maintenance," European Journal of Operational Research, Elsevier, vol. 221(2), pages 360-367.
    14. Gede Agus Widyadana & Hui Ming Wee, 2012. "An economic production quantity model for deteriorating items with preventive maintenance policy and random machine breakdown," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(10), pages 1870-1882.
    15. Marais, Karen B., 2013. "Value maximizing maintenance policies under general repair," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 76-87.
    16. Zio, Enrico & Compare, Michele, 2013. "Evaluating maintenance policies by quantitative modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 53-65.
    17. Wu, Shaomin & Coolen, Frank P.A., 2013. "A cost-based importance measure for system components: An extension of the Birnbaum importance," European Journal of Operational Research, Elsevier, vol. 225(1), pages 189-195.
    18. Xufeng Zhao & Toshio Nakagawa & Cunhua Qian, 2012. "Optimal imperfect preventive maintenance policies for a used system," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(9), pages 1632-1641.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khorasgani, Hamed & Biswas, Gautam & Sankararaman, Shankar, 2016. "Methodologies for system-level remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 8-18.
    2. Liu, Bin & Wu, Shaomin & Xie, Min & Kuo, Way, 2017. "A condition-based maintenance policy for degrading systems with age- and state-dependent operating cost," European Journal of Operational Research, Elsevier, vol. 263(3), pages 879-887.
    3. Zhu, Xiaoyan & Chen, Zhiqiang & Borgonovo, Emanuele, 2021. "Remaining-useful-lifetime and system-remaining-profit based importance measures for decisions on preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Dias, Luis & Leitão, Armando & Guimarães, Luis, 2021. "Resource definition and allocation for a multi-asset portfolio with heterogeneous degradation," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    5. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.
    6. Wu, Fan & Niknam, Seyed A. & Kobza, John E., 2015. "A cost effective degradation-based maintenance strategy under imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 234-243.
    7. Ece Zeliha Demirci & Joachim Arts & Geert-Jan Van Houtum, 2022. "A restless bandit approach for capacitated condition based maintenance scheduling," DEM Discussion Paper Series 22-01, Department of Economics at the University of Luxembourg.
    8. Zhang, Mimi, 2020. "A heuristic policy for maintaining multiple multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    9. Abdollahzadeh, Hadi & Atashgar, Karim & Abbasi, Morteza, 2016. "Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups," Renewable Energy, Elsevier, vol. 88(C), pages 247-261.
    10. Nguyen, Hung & Abdel-Mottaleb, Noha & Uddin, Shihab & Zhang, Qiong & Lu, Qing & Zhang, He & Li, Mingyang, 2022. "Joint maintenance planning of deteriorating co-located road and water infrastructures with interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    11. Giovanni Gravito de Carvalho Chrysostomo & Marco Vinicius Bhering de Aguiar Vallim & Leilton Santos da Silva & Leandro A. Silva & Arnaldo Rabello de Aguiar Vallim Filho, 2020. "A Framework for Big Data Analytical Process and Mapping—BAProM: Description of an Application in an Industrial Environment," Energies, MDPI, vol. 13(22), pages 1-28, November.
    12. Olde Keizer, Minou C.A. & Flapper, Simme Douwe P. & Teunter, Ruud H., 2017. "Condition-based maintenance policies for systems with multiple dependent components: A review," European Journal of Operational Research, Elsevier, vol. 261(2), pages 405-420.
    13. Jun Wang & Yuyang Wang & Yuqiang Fu, 2023. "Joint Optimization of Condition-Based Maintenance and Performance Control for Linear Multi-State Consecutively Connected Systems," Mathematics, MDPI, vol. 11(12), pages 1-19, June.
    14. Li, Yaohan & Dong, You & Guo, Hongyuan, 2023. "Copula-based multivariate renewal model for life-cycle analysis of civil infrastructure considering multiple dependent deterioration processes," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    15. Liu, Jie & Zio, Enrico, 2017. "System dynamic reliability assessment and failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 21-36.
    16. Liu, Bin & Wu, Jun & Xie, Min, 2015. "Cost analysis for multi-component system with failure interaction under renewing free-replacement warranty," European Journal of Operational Research, Elsevier, vol. 243(3), pages 874-882.
    17. Liu, Bin & Liang, Zhenglin & Parlikad, Ajith Kumar & Xie, Min & Kuo, Way, 2017. "Condition-based maintenance for systems with aging and cumulative damage based on proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 200-209.
    18. Wang, Yifei & He, Rui & Tian, Zhigang, 2023. "Opportunistic condition-based maintenance optimization for electrical distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    19. Zhang, Jian & Huang, Xiaoyan & Fang, Youtong & Zhou, Jing & Zhang, He & Li, Jing, 2016. "Optimal inspection-based preventive maintenance policy for three-state mechanical components under competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 95-103.
    20. Gössinger, Ralf & Helmke, Hanna & Kaluzny, Michael, 2017. "Condition-based release of maintenance jobs in a decentralised production-maintenance system – An analysis of alternative stochastic approaches," International Journal of Production Economics, Elsevier, vol. 193(C), pages 528-537.
    21. Peng, Weiwen & Li, Yan-Feng & Mi, Jinhua & Yu, Le & Huang, Hong-Zhong, 2016. "Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 75-87.
    22. Jiang, Xiuhong & Duan, Fuhai & Tian, Heng & Wei, Xuedong, 2015. "Optimization of reliability centered predictive maintenance scheme for inertial navigation system," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 208-217.
    23. Chen, Rentong & Zhang, Chao & Wang, Shaoping & Zio, Enrico & Dui, Hongyan & Zhang, Yadong, 2023. "Importance measures for critical components in complex system based on Copula Hierarchical Bayesian Network," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    24. Oakley, Jordan L. & Wilson, Kevin J. & Philipson, Pete, 2022. "A condition-based maintenance policy for continuously monitored multi-component systems with economic and stochastic dependence," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    25. Dui, Hongyan & Liu, Meng & Song, Jiaying & Wu, Shaomin, 2023. "Importance measure-based resilience management: Review, methodology and perspectives on maintenance," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yen-Luan Chen & Chin-Chih Chang & Dwan-Fang Sheu, 2016. "Optimum random and age replacement policies for customer-demand multi-state system reliability under imperfect maintenance," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(5), pages 1130-1141, April.
    2. Zhou, Yifan & Zhang, Zhisheng & Lin, Tian Ran & Ma, Lin, 2013. "Maintenance optimisation of a multi-state series–parallel system considering economic dependence and state-dependent inspection intervals," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 248-259.
    3. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    4. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    5. Xiang, Yisha, 2013. "Joint optimization of X¯ control chart and preventive maintenance policies: A discrete-time Markov chain approach," European Journal of Operational Research, Elsevier, vol. 229(2), pages 382-390.
    6. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    7. Serkan Eryilmaz, 2013. "Component importance for linear consecutive‐ k ‐Out‐of‐ n and m ‐Consecutive‐ k ‐Out‐of‐ n systems with exchangeable components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(4), pages 313-320, June.
    8. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    9. Zhou, Yifan & Lin, Tian Ran & Sun, Yong & Bian, Yangqing & Ma, Lin, 2015. "An effective approach to reducing strategy space for maintenance optimisation of multistate series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 40-53.
    10. Briš, Radim & Byczanski, Petr & Goňo, Radomír & Rusek, Stanislav, 2017. "Discrete maintenance optimization of complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 80-89.
    11. Si, Xiao-Sheng & Chen, Mao-Yin & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2013. "Specifying measurement errors for required lifetime estimation performance," European Journal of Operational Research, Elsevier, vol. 231(3), pages 631-644.
    12. Vu, Hai Canh & Do, Phuc & Barros, Anne & Bérenguer, Christophe, 2014. "Maintenance grouping strategy for multi-component systems with dynamic contexts," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 233-249.
    13. Hong, H.P. & Zhou, W. & Zhang, S. & Ye, W., 2014. "Optimal condition-based maintenance decisions for systems with dependent stochastic degradation of components," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 276-288.
    14. Ágota Bányai, 2021. "Energy Consumption-Based Maintenance Policy Optimization," Energies, MDPI, vol. 14(18), pages 1-33, September.
    15. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    16. Compare, Michele & Antonello, Federico & Pinciroli, Luca & Zio, Enrico, 2022. "A general model for life-cycle cost analysis of Condition-Based Maintenance enabled by PHM capabilities," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    17. Yi Ding & Anatoly Lisnianski & Ilia Frenkel & Lev Khvatskin, 2009. "Optimal corrective maintenance contract planning for aging multi‐state system," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(5), pages 612-631, September.
    18. Oakley, Jordan L. & Wilson, Kevin J. & Philipson, Pete, 2022. "A condition-based maintenance policy for continuously monitored multi-component systems with economic and stochastic dependence," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    19. de Jonge, Bram & Dijkstra, Arjan S. & Romeijnders, Ward, 2015. "Cost benefits of postponing time-based maintenance under lifetime distribution uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 15-21.
    20. Compare, Michele & Bellani, Luca & Zio, Enrico, 2017. "Reliability model of a component equipped with PHM capabilities," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 4-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:132:y:2014:i:c:p:83-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.