IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6082-d642072.html
   My bibliography  Save this article

Optimal Maintenance Policy for Offshore Wind Systems

Author

Listed:
  • Vincent F. Yu

    (Department of Industrial Management, National Taiwan University of Science and Technology, Taipei 106, Taiwan
    Center for Cyber-Physical System Innovation, National Taiwan University of Science and Technology, Taipei 106, Taiwan)

  • Thi Huynh Anh Le

    (Department of Industrial Management, National Taiwan University of Science and Technology, Taipei 106, Taiwan
    Faculty of Project Management, The University of Danang, University of Science and Technology, Danang 550000, Vietnam)

  • Tai-Sheng Su

    (Department of Industrial Management, National Pingtung University of Science and Technology, Pingtung 912, Taiwan)

  • Shih-Wei Lin

    (Department of Information Management, Chang Gung University, Taoyuan 333, Taiwan
    Department of Industrial Engineering and Management, Ming Chi University of Technology, New Taipei 243, Taiwan
    Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan)

Abstract

Employing maintenance threshold plays a critical step in determining an optimal maintenance policy for an offshore wind system to reduce maintenance costs while increasing system reliability. Considering the limited works on this topic, we propose a two-stage procedure to determine the optimal maintenance thresholds for multiple components of an offshore wind power system in order to minimize maintenance costs while achieving the highest possible system reliability. First, using genetic algorithms, a dynamic strategy is developed to determine the maintenance thresholds of individual components where the cost of maintenance and the rate of failure are critical. Then, fuzzy multi-objective programming is applied to find the system’s optimal maintenance threshold considering all components. A variety of factors including weather conditions, system reliability, power generation losses, and electricity market price are carefully considered to enhance the system’s reliability and reduce the costs of maintenance. When maintenance threshold results are compared, component-wise versus system-wise, an average system savings of 1.19% for maintenance cost is obtained while the system reliability is increased by 1.62% on average.

Suggested Citation

  • Vincent F. Yu & Thi Huynh Anh Le & Tai-Sheng Su & Shih-Wei Lin, 2021. "Optimal Maintenance Policy for Offshore Wind Systems," Energies, MDPI, vol. 14(19), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6082-:d:642072
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6082/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6082/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu Liu & Yanfeng Li & Hong-Zhong Huang & Ming Zuo & Zhanquan Sun, 2010. "Optimal preventive maintenance policy under fuzzy Bayesian reliability assessment environments," IISE Transactions, Taylor & Francis Journals, vol. 42(10), pages 734-745.
    2. Poppe, Joeri & Boute, Robert N. & Lambrecht, Marc R., 2018. "A hybrid condition-based maintenance policy for continuously monitored components with two degradation thresholds," European Journal of Operational Research, Elsevier, vol. 268(2), pages 515-532.
    3. Jiang, Zhiyu, 2021. "Installation of offshore wind turbines: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Volkanovski, Andrija & Mavko, Borut & Boševski, Tome & Čauševski, Anton & Čepin, Marko, 2008. "Genetic algorithm optimisation of the maintenance scheduling of generating units in a power system," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 779-789.
    5. Abbink, Klaus & Dong, Lu & Huang, Lingbo, 2023. "Preventive wars," Games and Economic Behavior, Elsevier, vol. 142(C), pages 552-569.
      • Klaus Abbink & Lu Dong & Lingbo Huang, 2022. "Preventive Wars," Discussion Papers 2022-01, The Centre for Decision Research and Experimental Economics, School of Economics, University of Nottingham.
    6. Bahmani-Firouzi, Bahman & Farjah, Ebrahim & Azizipanah-Abarghooee, Rasoul, 2013. "An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties," Energy, Elsevier, vol. 50(C), pages 232-244.
    7. Zhang, Chen & Gao, Wei & Guo, Sheng & Li, Youliang & Yang, Tao, 2017. "Opportunistic maintenance for wind turbines considering imperfect, reliability-based maintenance," Renewable Energy, Elsevier, vol. 103(C), pages 606-612.
    8. Zhu, Qiushi & Peng, Hao & Timmermans, Bas & van Houtum, Geert-Jan, 2017. "A condition-based maintenance model for a single component in a system with scheduled and unscheduled downs," International Journal of Production Economics, Elsevier, vol. 193(C), pages 365-380.
    9. Lin, Zi & Cevasco, Debora & Collu, Maurizio, 2020. "A methodology to develop reduced-order models to support the operation and maintenance of offshore wind turbines," Applied Energy, Elsevier, vol. 259(C).
    10. Do, Phuc & Voisin, Alexandre & Levrat, Eric & Iung, Benoit, 2015. "A proactive condition-based maintenance strategy with both perfect and imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 22-32.
    11. J. J. McCall, 1963. "Operating Characteristics of Opportunistic Replacement and Inspection Policies," Management Science, INFORMS, vol. 10(1), pages 85-97, October.
    12. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McMorland, J. & Collu, M. & McMillan, D. & Carroll, J. & Coraddu, A., 2023. "Opportunistic maintenance for offshore wind: A review and proposal of future framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Papi, F. & Bianchini, A., 2022. "Technical challenges in floating offshore wind turbine upscaling: A critical analysis based on the NREL 5 MW and IEA 15 MW Reference Turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Jiang, Zhiyu & Yang, Limin & Gao, Zhen & Moan, Torgeir, 2022. "Integrated dynamic analysis of a spar floating wind turbine with a hydraulic drivetrain," Renewable Energy, Elsevier, vol. 201(P1), pages 608-623.
    4. Vanderschueren, Toon & Boute, Robert & Verdonck, Tim & Baesens, Bart & Verbeke, Wouter, 2023. "Optimizing the preventive maintenance frequency with causal machine learning," International Journal of Production Economics, Elsevier, vol. 258(C).
    5. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    6. Castro, Inma T. & Basten, Rob J.I. & van Houtum, Geert-Jan, 2020. "Maintenance cost evaluation for heterogeneous complex systems under continuous monitoring," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    7. Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Wang, Jinhe & Zhang, Xiaohong & Zeng, Jianchao & Zhang, Yunzheng, 2020. "Joint external and internal opportunistic optimisation for wind turbine considering wind velocity," Renewable Energy, Elsevier, vol. 159(C), pages 380-398.
    9. van Staden, Heletjé E. & Deprez, Laurens & Boute, Robert N., 2022. "A dynamic “predict, then optimize” preventive maintenance approach using operational intervention data," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1079-1096.
    10. Zhang, Chen & Gao, Wei & Guo, Sheng & Li, Youliang & Yang, Tao, 2017. "Opportunistic maintenance for wind turbines considering imperfect, reliability-based maintenance," Renewable Energy, Elsevier, vol. 103(C), pages 606-612.
    11. Tjaberings, Jorick & Fazi, Stefano & Ursavas, Evrim, 2022. "Evaluating operational strategies for the installation of offshore wind turbine substructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    12. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Mousavi, Yashar & Bevan, Geraint & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Sliding mode control of wind energy conversion systems: Trends and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Ruiz Muñoz, G.A. & Sørensen, J.D., 2020. "Probabilistic inspection planning of offshore welds subject to the transition from protected to corrosive environment," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    16. Lin, Chen & Xiao, Hui & Kou, Gang & Peng, Rui, 2020. "Defending a series system with individual protection, overarching protection, and disinformation," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    17. Yin, Yue & Liu, Tianqi & He, Chuan, 2019. "Day-ahead stochastic coordinated scheduling for thermal-hydro-wind-photovoltaic systems," Energy, Elsevier, vol. 187(C).
    18. Lin Wang & Zhiqiang Lu & Yifei Ren, 2019. "A rolling horizon approach for production planning and condition-based maintenance under uncertain demand," Journal of Risk and Reliability, , vol. 233(6), pages 1014-1028, December.
    19. Giannini, Gianmaria & Rosa-Santos, Paulo & Ramos, Victor & Taveira-Pinto, Francisco, 2022. "Wave energy converters design combining hydrodynamic performance and structural assessment," Energy, Elsevier, vol. 249(C).
    20. Froger, Aurélien & Gendreau, Michel & Mendoza, Jorge E. & Pinson, Éric & Rousseau, Louis-Martin, 2016. "Maintenance scheduling in the electricity industry: A literature review," European Journal of Operational Research, Elsevier, vol. 251(3), pages 695-706.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6082-:d:642072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.