IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v254y2025ipbs0951832024007051.html
   My bibliography  Save this article

Condition-based maintenance for multi-component systems: A scalable optimization model with two thresholds

Author

Listed:
  • Kıvanç, İpek
  • Fecarotti, Claudia
  • Raassens, Néomie
  • van Houtum, Geert-Jan

Abstract

Many original equipment manufacturers (OEMs) provide customized after-sales service contracts tailored to their customers’ specific requirements. While these customized offerings may increase customer satisfaction and loyalty, they are likely more expensive, and that in times that OEMs are striving to reduce maintenance costs and ease the workload of their service engineers. To address this challenge, we introduce a quantitative methodology for shaping maintenance policies that minimize overall maintenance costs for systems comprising multiple heterogeneous components over a finite lifespan. Our proposed two-threshold condition-based maintenance policy incorporates scheduled visits and semi-urgent interventions, using component-level control thresholds to preventively trigger component replacements. Scheduled visits provide opportunities for grouping component replacements, capitalizing on positive economic dependencies.

Suggested Citation

  • Kıvanç, İpek & Fecarotti, Claudia & Raassens, Néomie & van Houtum, Geert-Jan, 2025. "Condition-based maintenance for multi-component systems: A scalable optimization model with two thresholds," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
  • Handle: RePEc:eee:reensy:v:254:y:2025:i:pb:s0951832024007051
    DOI: 10.1016/j.ress.2024.110634
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024007051
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110634?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Poppe, Joeri & Boute, Robert N. & Lambrecht, Marc R., 2018. "A hybrid condition-based maintenance policy for continuously monitored components with two degradation thresholds," European Journal of Operational Research, Elsevier, vol. 268(2), pages 515-532.
    2. Castro, Inma T. & Basten, Rob J.I. & van Houtum, Geert-Jan, 2020. "Maintenance cost evaluation for heterogeneous complex systems under continuous monitoring," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    3. Dinh, Duc-Hanh & Do, Phuc & Iung, Benoit, 2022. "Multi-level opportunistic predictive maintenance for multi-component systems with economic dependence and assembly/disassembly impacts," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. de Jonge, Bram, 2019. "Discretizing continuous-time continuous-state deterioration processes, with an application to condition-based maintenance optimization," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 1-5.
    5. Zhu, Qiushi & Peng, Hao & Timmermans, Bas & van Houtum, Geert-Jan, 2017. "A condition-based maintenance model for a single component in a system with scheduled and unscheduled downs," International Journal of Production Economics, Elsevier, vol. 193(C), pages 365-380.
    6. Shafiee, Mahmood & Finkelstein, Maxim & Bérenguer, Christophe, 2015. "An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 463-471.
    7. de Jonge, Bram & Klingenberg, Warse & Teunter, Ruud & Tinga, Tiedo, 2016. "Reducing costs by clustering maintenance activities for multiple critical units," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 93-103.
    8. Dinh, Duc-Hanh & Do, Phuc & Iung, Benoit & Nguyen, Pham-The-Nhan, 2024. "Reliability modeling and opportunistic maintenance optimization for a multicomponent system with structural dependence," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Andersen, Jesper Fink & Andersen, Anders Reenberg & Kulahci, Murat & Nielsen, Bo Friis, 2022. "A numerical study of Markov decision process algorithms for multi-component replacement problems," European Journal of Operational Research, Elsevier, vol. 299(3), pages 898-909.
    10. Nakagawa, T. & Mizutani, S., 2009. "A summary of maintenance policies for a finite interval," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 89-96.
    11. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    12. Wang, Yifei & He, Rui & Tian, Zhigang, 2023. "Opportunistic condition-based maintenance optimization for electrical distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    13. Kivanç, İpek & Fecarotti, Claudia & Raassens, Néomie & van Houtum, Geert-Jan, 2024. "A scalable multi-objective maintenance optimization model for systems with multiple heterogeneous components and a finite lifespan," European Journal of Operational Research, Elsevier, vol. 315(2), pages 567-579.
    14. Olde Keizer, Minou C.A. & Flapper, Simme Douwe P. & Teunter, Ruud H., 2017. "Condition-based maintenance policies for systems with multiple dependent components: A review," European Journal of Operational Research, Elsevier, vol. 261(2), pages 405-420.
    15. Zhang, Wenyu & Zhang, Xiaohong & He, Shuguang & Zhao, Xing & He, Zhen, 2024. "Optimal condition-based maintenance policy for multi-component repairable systems with economic dependence in a finite-horizon," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    16. Joachim Arts & Rob Basten, 2018. "Design of multi-component periodic maintenance programs with single-component models," IISE Transactions, Taylor & Francis Journals, vol. 50(7), pages 606-615, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Kivanç, İpek & Fecarotti, Claudia & Raassens, Néomie & van Houtum, Geert-Jan, 2024. "A scalable multi-objective maintenance optimization model for systems with multiple heterogeneous components and a finite lifespan," European Journal of Operational Research, Elsevier, vol. 315(2), pages 567-579.
    3. Leppinen, Jussi & Punkka, Antti & Ekholm, Tommi & Salo, Ahti, 2025. "An optimization model for determining cost-efficient maintenance policies for multi-component systems with economic and structural dependencies," Omega, Elsevier, vol. 130(C).
    4. Eggertsson, Ragnar & Eruguz, Ayse Sena & Basten, Rob & Maillart, Lisa M., 2025. "Maintenance optimization for multi-component systems with a single sensor," European Journal of Operational Research, Elsevier, vol. 320(3), pages 559-569.
    5. Li, Meiyan & Wu, Bei, 2024. "Optimal condition-based opportunistic maintenance policy for two-component systems considering common cause failure," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    6. Castro, Inma T. & Basten, Rob J.I. & van Houtum, Geert-Jan, 2020. "Maintenance cost evaluation for heterogeneous complex systems under continuous monitoring," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    7. He, Zhichao & Wang, Yanhui & Sun, Wanhua & Hao, Yucheng & Xia, Weifu, 2025. "A proactive opportunistic maintenance decision model based on reliability in train systems," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    8. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    9. Havinga, Maik J.A. & de Jonge, Bram, 2020. "Condition-based maintenance in the cyclic patrolling repairman problem," International Journal of Production Economics, Elsevier, vol. 222(C).
    10. Kammouh, Omar & Fecarotti, Claudia & Marandi, Ahmadreza, 2024. "A scalable optimization approach to the intervention planning of complex interconnected infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    11. Cai, Yue & Teunter, Ruud H. & de Jonge, Bram, 2023. "A data-driven approach for condition-based maintenance optimization," European Journal of Operational Research, Elsevier, vol. 311(2), pages 730-738.
    12. Azizi, Fariba & Salari, Nooshin, 2023. "A novel condition-based maintenance framework for parallel manufacturing systems based on bivariate birth/birth–death processes," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    13. Uit Het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and load-sharing optimization for two-unit systems with economic dependency," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1119-1131.
    14. Zhang, Nan & Deng, Yingjun & Liu, Bin & Zhang, Jun, 2023. "Condition-based maintenance for a multi-component system in a dynamic operating environment," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    15. Mizuki Kasuya & Lu Jin, 2025. "Structural Properties of Optimal Maintenance Policies for k -out-of- n Systems with Interdependence Between Internal Deterioration and External Shocks," Mathematics, MDPI, vol. 13(5), pages 1-23, February.
    16. Dinh, Duc-Hanh & Do, Phuc & Iung, Benoit & Nguyen, Pham-The-Nhan, 2024. "Reliability modeling and opportunistic maintenance optimization for a multicomponent system with structural dependence," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    17. Wang, Jun & Zhu, Xiaoyan, 2021. "Joint optimization of condition-based maintenance and inventory control for a k-out-of-n:F system of multi-state degrading components," European Journal of Operational Research, Elsevier, vol. 290(2), pages 514-529.
    18. Qi, Faqun & Huang, Meiqi, 2024. "Joint optimization of maintenance and spares inventory policy for a series-parallel system considering dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    19. Poppe, Joeri & Boute, Robert N. & Lambrecht, Marc R., 2018. "A hybrid condition-based maintenance policy for continuously monitored components with two degradation thresholds," European Journal of Operational Research, Elsevier, vol. 268(2), pages 515-532.
    20. Wei, Yian & Cheng, Yao, 2025. "An optimal two-dimensional maintenance policy for self-service systems with multi-task demands and subject to competing sudden and deterioration-induced failures," Reliability Engineering and System Safety, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:254:y:2025:i:pb:s0951832024007051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.