IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v241y2024ics0951832023006221.html
   My bibliography  Save this article

Reliability modeling and opportunistic maintenance optimization for a multicomponent system with structural dependence

Author

Listed:
  • Dinh, Duc-Hanh
  • Do, Phuc
  • Iung, Benoit
  • Nguyen, Pham-The-Nhan

Abstract

In manufacturing systems, components are typically structurally interdependent, and the maintenance of a component often requires the disassembly of one or several other components. The action of disassembly may adversely affect the failure behavior of disassembled components. This study aims to investigate how disassembly actions can affect the system reliability and opportunistic maintenance optimization of disassembled components in a multicomponent system subjected to structural dependence. First, the impact of a disassembly action on the failure rate of a disassembled component was investigated and mathematically formulated. The proposed model considered both the component properties and skills of maintenance technicians. Subsequently, a reliability model integrating the impact of the disassembly action was developed. Finally, to consider the impact of structural dependence on maintenance optimization, an adaptive opportunistic maintenance policy was proposed. The proposed opportunistic maintenance policy also considered the economic dependence between components, whereby the joint maintenance of several components could reduce the total maintenance cost. Various numerical studies have been conducted to illustrate the feasibility and advantages of the proposed models and opportunistic policies. The results showed the effects of disassembly actions on the system. It also showed that omitting the impact of these actions could lead to an underestimation of the failure risk of the components and system, leading to a suboptimal maintenance policy.

Suggested Citation

  • Dinh, Duc-Hanh & Do, Phuc & Iung, Benoit & Nguyen, Pham-The-Nhan, 2024. "Reliability modeling and opportunistic maintenance optimization for a multicomponent system with structural dependence," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023006221
    DOI: 10.1016/j.ress.2023.109708
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023006221
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109708?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. C. Thomas, 1985. "Replacement of Systems and Components in Renewal Decision Problems," Operations Research, INFORMS, vol. 33(2), pages 404-411, April.
    2. Chen, Yuan & Qiu, Qingan & Zhao, Xian, 2022. "Condition-based opportunistic maintenance policies with two-phase inspections for continuous-state systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Dinh, Duc-Hanh & Do, Phuc & Iung, Benoit, 2022. "Multi-level opportunistic predictive maintenance for multi-component systems with economic dependence and assembly/disassembly impacts," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Liu, Qiannan & Ma, Lin & Wang, Naichao & Chen, Ankang & Jiang, Qihang, 2022. "A condition-based maintenance model considering multiple maintenance effects on the dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    5. Liu, Bin & Wu, Shaomin & Xie, Min & Kuo, Way, 2017. "A condition-based maintenance policy for degrading systems with age- and state-dependent operating cost," European Journal of Operational Research, Elsevier, vol. 263(3), pages 879-887.
    6. Zhou, Xiaojun & Huang, Kaimin & Xi, Lifeng & Lee, Jay, 2015. "Preventive maintenance modeling for multi-component systems with considering stochastic failures and disassembly sequence," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 231-237.
    7. Starling, James K. & Mastrangelo, Christina & Choe, Youngjun, 2021. "Improving Weibull distribution estimation for generalized Type I censored data using modified SMOTE," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    8. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    9. Chen, Nan & Ye, Zhi-Sheng & Xiang, Yisha & Zhang, Linmiao, 2015. "Condition-based maintenance using the inverse Gaussian degradation model," European Journal of Operational Research, Elsevier, vol. 243(1), pages 190-199.
    10. Wang, Yifei & He, Rui & Tian, Zhigang, 2023. "Opportunistic condition-based maintenance optimization for electrical distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    11. Liu, Di & Wang, Shaoping, 2021. "Reliability estimation from lifetime testing data and degradation testing data with measurement error based on evidential variable and Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    12. Olde Keizer, Minou C.A. & Flapper, Simme Douwe P. & Teunter, Ruud H., 2017. "Condition-based maintenance policies for systems with multiple dependent components: A review," European Journal of Operational Research, Elsevier, vol. 261(2), pages 405-420.
    13. Dao, Cuong D. & Zuo, Ming J. & Pandey, Mayank, 2014. "Selective maintenance for multi-state series–parallel systems under economic dependence," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 240-249.
    14. Haohao Shi & Ji Zhang & Enrico Zio & Xufeng Zhao, 2023. "Opportunistic maintenance policies for multi-machine production systems with quality and availability improvement," Post-Print hal-04103539, HAL.
    15. Olde Keizer, Minou C.A. & Teunter, Ruud H. & Veldman, Jasper, 2016. "Clustering condition-based maintenance for systems with redundancy and economic dependencies," European Journal of Operational Research, Elsevier, vol. 251(2), pages 531-540.
    16. Shi, Haohao & Zhang, Ji & Zio, Enrico & Zhao, Xufeng, 2023. "Opportunistic maintenance policies for multi-machine production systems with quality and availability improvement," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Wang, Jun & Zhu, Xiaoyan, 2021. "Joint optimization of condition-based maintenance and inventory control for a k-out-of-n:F system of multi-state degrading components," European Journal of Operational Research, Elsevier, vol. 290(2), pages 514-529.
    3. Zhang, Wenyu & Zhang, Xiaohong & He, Shuguang & Zhao, Xing & He, Zhen, 2024. "Optimal condition-based maintenance policy for multi-component repairable systems with economic dependence in a finite-horizon," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Yang, Li & Ye, Zhi-sheng & Lee, Chi-Guhn & Yang, Su-fen & Peng, Rui, 2019. "A two-phase preventive maintenance policy considering imperfect repair and postponed replacement," European Journal of Operational Research, Elsevier, vol. 274(3), pages 966-977.
    5. Zhang, Nailong & Si, Wujun, 2020. "Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    6. Liu, Xingchen & Sun, Qiuzhuang & Ye, Zhi-Sheng & Yildirim, Murat, 2021. "Optimal multi-type inspection policy for systems with imperfect online monitoring," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Andersen, Jesper Fink & Andersen, Anders Reenberg & Kulahci, Murat & Nielsen, Bo Friis, 2022. "A numerical study of Markov decision process algorithms for multi-component replacement problems," European Journal of Operational Research, Elsevier, vol. 299(3), pages 898-909.
    8. Wang, Yukun & Li, Xiaopeng & Chen, Junyan & Liu, Yiliu, 2022. "A condition-based maintenance policy for multi-component systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Dinh, Duc-Hanh & Do, Phuc & Iung, Benoit, 2022. "Multi-level opportunistic predictive maintenance for multi-component systems with economic dependence and assembly/disassembly impacts," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Liu, Yu & Chen, Yiming & Jiang, Tao, 2018. "On sequence planning for selective maintenance of multi-state systems under stochastic maintenance durations," European Journal of Operational Research, Elsevier, vol. 268(1), pages 113-127.
    11. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    12. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hybrid opportunistic maintenance policy for serial-parallel multi-station manufacturing systems with spare part overlap," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    13. Liu, Xinbao & Yang, Tianji & Pei, Jun & Liao, Haitao & Pohl, Edward A., 2019. "Replacement and inventory control for a multi-customer product service system with decreasing replacement costs," European Journal of Operational Research, Elsevier, vol. 273(2), pages 561-574.
    14. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hierarchical-clustering-based joint optimization of spare part provision and maintenance scheduling for serial-parallel multi-station manufacturing systems," International Journal of Production Economics, Elsevier, vol. 264(C).
    15. Uit Het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and load-sharing optimization for two-unit systems with economic dependency," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1119-1131.
    16. Zhang, Nan & Deng, Yingjun & Liu, Bin & Zhang, Jun, 2023. "Condition-based maintenance for a multi-component system in a dynamic operating environment," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Deep, Akash & Zhou, Shiyu & Veeramani, Dharmaraj & Chen, Yong, 2023. "Partially observable Markov decision process-based optimal maintenance planning with time-dependent observations," European Journal of Operational Research, Elsevier, vol. 311(2), pages 533-544.
    18. Wu, Tianyi & Yang, Li & Ma, Xiaobing & Zhang, Zihan & Zhao, Yu, 2020. "Dynamic maintenance strategy with iteratively updated group information," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    19. Zhao, Xiujie & Liu, Bin & Xu, Jianyu & Wang, Xiao-Lin, 2023. "Imperfect maintenance policies for warranted products under stochastic performance degradation," European Journal of Operational Research, Elsevier, vol. 308(1), pages 150-165.
    20. MERCIER, Sophie & CASTRO, I.T., 2019. "Stochastic comparisons of imperfect maintenance models for a gamma deteriorating system," European Journal of Operational Research, Elsevier, vol. 273(1), pages 237-248.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023006221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.