Reliability estimation from lifetime testing data and degradation testing data with measurement error based on evidential variable and Wiener process
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2020.107231
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Lizhi & Pan, Rong & Li, Xiaoyang & Jiang, Tongmin, 2013. "A Bayesian reliability evaluation method with integrated accelerated degradation testing and field information," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 38-47.
- Pan, Donghui & Wei, Yantao & Fang, Houzhang & Yang, Wenzhi, 2018. "A reliability estimation approach via Wiener degradation model with measurement errors," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 131-141.
- Liu, Di & Wang, Shaoping, 2020. "A degradation modeling and reliability estimation method based on Wiener process and evidential variable," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
- Zhang, Z. & Jiang, C. & Wang, G.G. & Han, X., 2015. "First and second order approximate reliability analysis methods using evidence theory," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 40-49.
- Wang, Lizhi & Pan, Rong & Wang, Xiaohong & Fan, Wenhui & Xuan, Jinquan, 2017. "A Bayesian reliability evaluation method with different types of data from multiple sources," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 128-135.
- Wang, Pingping & Tang, Yincai & Joo Bae, Suk & He, Yong, 2018. "Bayesian analysis of two-phase degradation data based on change-point Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 244-256.
- Peng, Weiwen & Li, Yan-Feng & Yang, Yuan-Jian & Huang, Hong-Zhong & Zuo, Ming J., 2014. "Inverse Gaussian process models for degradation analysis: A Bayesian perspective," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 175-189.
- Liu, Di & Wang, Shaoping & Zhang, Chao & Tomovic, Mileta, 2018. "Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 25-38.
- Ma, Zhonghai & Wang, Shaoping & Ruiz, Cesar & Zhang, Chao & Liao, Haitao & Pohl, Edward, 2020. "Reliability estimation from two types of accelerated testing data considering measurement error," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Lin, Kunsong & Chen, Yunxia & Xu, Dan, 2017. "Reliability assessment model considering heterogeneous population in a multiple stresses accelerated test," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 134-143.
- Shengjin Tang & Chuanqiang Yu & Xue Wang & Xiaosong Guo & Xiaosheng Si, 2014. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error," Energies, MDPI, vol. 7(2), pages 1-28, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dinh, Duc-Hanh & Do, Phuc & Iung, Benoit & Nguyen, Pham-The-Nhan, 2024. "Reliability modeling and opportunistic maintenance optimization for a multicomponent system with structural dependence," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Tang, Ting & Yuan, Huimei, 2022. "A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Shuto, Susumu & Amemiya, Takashi, 2022. "Sequential Bayesian inference for Weibull distribution parameters with initial hyperparameter optimization for system reliability estimation," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
- Jia, Xiang & Guo, Bo, 2022. "Reliability analysis for complex system with multi-source data integration and multi-level data transmission," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Jiaxin Yang & Shengjin Tang & Pengya Fang & Fengfei Wang & Xiaoyan Sun & Xiaosheng Si, 2024. "Remaining useful life prediction of implicit linear Wiener degradation process based on multi-source information," Journal of Risk and Reliability, , vol. 238(1), pages 93-111, February.
- Liu, Di & Wang, Shaoping & Zhang, Chao, 2022. "Reliability estimation from two types of accelerated testing data based on an artificial neural network supported Wiener process," Applied Mathematics and Computation, Elsevier, vol. 417(C).
- Cheng, Yao & Liao, Haitao & Huang, Zhiyi, 2021. "Optimal degradation-based hybrid double-stage acceptance sampling plan for a heterogeneous product," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
- Zheng, Huiling & Kong, Xuefeng & Xu, Houbao & Yang, Jun, 2021. "Reliability analysis of products based on proportional hazard model with degradation trend and environmental factor," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Xu, Xiaodong & Tang, Shengjin & Yu, Chuanqiang & Xie, Jian & Han, Xuebing & Ouyang, Minggao, 2021. "Remaining Useful Life Prediction of Lithium-ion Batteries Based on Wiener Process Under Time-Varying Temperature Condition," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
- He, Jiabei & Tian, Yi & Wu, Lifeng, 2022. "A hybrid data-driven method for rapid prediction of lithium-ion battery capacity," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Di & Wang, Shaoping & Cui, Xiaoyu, 2022. "An artificial neural network supported Wiener process based reliability estimation method considering individual difference and measurement error," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
- Liu, Di & Wang, Shaoping, 2021. "An artificial neural network supported stochastic process for degradation modeling and prediction," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
- Chen, Wen-Bin & Li, Xiao-Yang & Kang, Rui, 2022. "Integration for degradation analysis with multi-source ADT datasets considering dataset discrepancies and epistemic uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Liu, Di & Wang, Shaoping, 2020. "A degradation modeling and reliability estimation method based on Wiener process and evidential variable," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
- Liu, Di & Wang, Shaoping & Zhang, Chao, 2022. "Reliability estimation from two types of accelerated testing data based on an artificial neural network supported Wiener process," Applied Mathematics and Computation, Elsevier, vol. 417(C).
- Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Hao, Songhua & Yang, Jun & Berenguer, Christophe, 2019. "Degradation analysis based on an extended inverse Gaussian process model with skew-normal random effects and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 261-270.
- Ma, Zhonghai & Liao, Haitao & Ji, Hui & Wang, Shaoping & Yin, Fanglong & Nie, Songlin, 2021. "Optimal design of hybrid accelerated test based on the Inverse Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
- Le Liu & Xiao-Yang Li & Enrico Zio & Rui Kang & Tong-Min Jiang, 2017. "Model Uncertainty in Accelerated Degradation Testing Analysis," Post-Print hal-01652218, HAL.
- Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
- Xiangang Cao & Pengfei Li & Song Ming, 2021. "Remaining Useful Life Prediction-Based Maintenance Decision Model for Stochastic Deterioration Equipment under Data-Driven," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
- Wang, Huan & Wang, Guan-jun & Duan, Feng-jun, 2016. "Planning of step-stress accelerated degradation test based on the inverse Gaussian process," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 97-105.
- Liu, Yao & Wang, Yashun & Fan, Zhengwei & Bai, Guanghan & Chen, Xun, 2021. "Reliability modeling and a statistical inference method of accelerated degradation testing with multiple stresses and dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
- Pan, Yan & Jing, Yunteng & Wu, Tonghai & Kong, Xiangxing, 2022. "Knowledge-based data augmentation of small samples for oil condition prediction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Ma, Zhonghai & Wang, Shaoping & Ruiz, Cesar & Zhang, Chao & Liao, Haitao & Pohl, Edward, 2020. "Reliability estimation from two types of accelerated testing data considering measurement error," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Li, Jingkui & Liu, Xiaona & Lu, Yuze & Wang, Hanzheng, 2024. "Reliability analysis on energy storage system combining GO-FLOW methodology with GERT network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Dan Xu & Jiaolan He & Zhou Yang, 2022. "Reliability prediction based on Birnbaum–Saunders model and its application to smart meter," Annals of Operations Research, Springer, vol. 312(1), pages 519-532, May.
- Xu, Ancha & Shen, Lijuan, 2018. "Improved on-line estimation for gamma process," Statistics & Probability Letters, Elsevier, vol. 143(C), pages 67-73.
- Sun, Xuxue & Mraied, Hesham & Cai, Wenjun & Zhang, Qiong & Liang, Guoyuan & Li, Mingyang, 2018. "Bayesian latent degradation performance modeling and quantification of corroding aluminum alloys," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 84-96.
- Peihua Jiang, 2022. "Statistical Inference of Wiener Constant-Stress Accelerated Degradation Model with Random Effects," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
More about this item
Keywords
Evidential variable; Wiener process; Reliability estimation; Lifetime testing data; Degradation testing data; Measurement error;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:205:y:2021:i:c:s0951832020307316. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.