IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v238y2024i1p93-111.html
   My bibliography  Save this article

Remaining useful life prediction of implicit linear Wiener degradation process based on multi-source information

Author

Listed:
  • Jiaxin Yang
  • Shengjin Tang
  • Pengya Fang
  • Fengfei Wang
  • Xiaoyan Sun
  • Xiaosheng Si

Abstract

Accurate remaining useful life (RUL) prediction is helpful to improve the reliability and safety of complex systems. However, in practical engineering applications, it often occurs imperfect or scarce prior degradation information for the degradation system with measurement error (ME). In order to solve this problem, based on the implicit linear Wiener degradation process, a RUL prediction method which reasonably fuses failure time data or multi-source information is proposed in this paper. Firstly, based on the implicit linear Wiener degradation process, we obtain the relationship between the natures of parameters estimation and degradation data by theoretical derivation, which provides a theoretical basis regarding how to fuse multi-source information. Secondly, according to the natures of parameters estimation, we use field degradation data and historical degradation data to estimate the fixed parameters of the two prediction cases respectively, and fuse failure time data into the degradation model by the expectation maximization (EM) algorithm. Then, the Kalman filtering algorithm is used to online update the drift parameter based on field degradation data. Finally, we use some simulation experiments to further verify the natures of parameters estimation, and two practical case studies to verify the superiority of the proposed method.

Suggested Citation

  • Jiaxin Yang & Shengjin Tang & Pengya Fang & Fengfei Wang & Xiaoyan Sun & Xiaosheng Si, 2024. "Remaining useful life prediction of implicit linear Wiener degradation process based on multi-source information," Journal of Risk and Reliability, , vol. 238(1), pages 93-111, February.
  • Handle: RePEc:sae:risrel:v:238:y:2024:i:1:p:93-111
    DOI: 10.1177/1748006X221132606
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X221132606
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X221132606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Lizhi & Pan, Rong & Li, Xiaoyang & Jiang, Tongmin, 2013. "A Bayesian reliability evaluation method with integrated accelerated degradation testing and field information," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 38-47.
    2. Jin, Guang & Matthews, David E. & Zhou, Zhongbao, 2013. "A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 7-20.
    3. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    4. Peng, Weiwen & Li, Yan-Feng & Yang, Yuan-Jian & Huang, Hong-Zhong & Zuo, Ming J., 2014. "Inverse Gaussian process models for degradation analysis: A Bayesian perspective," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 175-189.
    5. Si, Xiao-Sheng & Wang, Wenbin & Chen, Mao-Yin & Hu, Chang-Hua & Zhou, Dong-Hua, 2013. "A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution," European Journal of Operational Research, Elsevier, vol. 226(1), pages 53-66.
    6. Linkan Bian & Nagi Gebraeel, 2012. "Computing and updating the first-passage time distribution for randomly evolving degradation signals," IISE Transactions, Taylor & Francis Journals, vol. 44(11), pages 974-987.
    7. Liu, Di & Wang, Shaoping, 2021. "Reliability estimation from lifetime testing data and degradation testing data with measurement error based on evidential variable and Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    8. Ling, M.H. & Ng, H.K.T. & Tsui, K.L., 2019. "Bayesian and likelihood inferences on remaining useful life in two-phase degradation models under gamma process," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 77-85.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Zhenan & Si, Xiaosheng & Hu, Changhua & Du, Dangbo & Pei, Hong, 2021. "A Bayesian Inference for Remaining Useful Life Estimation by Fusing Accelerated Degradation Data and Condition Monitoring Data," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    2. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    3. Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.
    4. Liu, Di & Wang, Shaoping, 2020. "A degradation modeling and reliability estimation method based on Wiener process and evidential variable," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    5. Aven, Terje & Rios Insua, David & Soyer, Refik & Zhu, Xiaoyan & Zio, Enrico, 2025. "Fifty years of reliability in operations research," European Journal of Operational Research, Elsevier, vol. 324(2), pages 361-381.
    6. Thirupathi Samala & Vijaya Kumar Manupati & Maria Leonilde R. Varela & Goran Putnik, 2021. "Investigation of Degradation and Upgradation Models for Flexible Unit Systems: A Systematic Literature Review," Future Internet, MDPI, vol. 13(3), pages 1-18, February.
    7. Zhang, Fode & Ng, Hon Keung Tony & Shi, Yimin, 2020. "Mis-specification analysis of Wiener degradation models by using f-divergence with outliers," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    8. Xu, Xiaodong & Tang, Shengjin & Yu, Chuanqiang & Xie, Jian & Han, Xuebing & Ouyang, Minggao, 2021. "Remaining Useful Life Prediction of Lithium-ion Batteries Based on Wiener Process Under Time-Varying Temperature Condition," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    9. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    10. Ta, Yuntian & Li, Yanfeng & Cai, Wenan & Zhang, Qianqian & Wang, Zhijian & Dong, Lei & Du, Wenhua, 2023. "Adaptive staged remaining useful life prediction method based on multi-sensor and multi-feature fusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    12. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.
    13. Tianyu Liu & Zhengqiang Pan & Quan Sun & Jing Feng & Yanzhen Tang, 2017. "Residual useful life estimation for products with two performance characteristics based on a bivariate Wiener process," Journal of Risk and Reliability, , vol. 231(1), pages 69-80, February.
    14. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    15. Liu, Di & Wang, Shaoping & Cui, Xiaoyu, 2022. "An artificial neural network supported Wiener process based reliability estimation method considering individual difference and measurement error," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    16. Shengjin Tang & Chuanqiang Yu & Xue Wang & Xiaosong Guo & Xiaosheng Si, 2014. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error," Energies, MDPI, vol. 7(2), pages 1-28, January.
    17. Wang, Huan & Wang, Guan-jun & Duan, Feng-jun, 2016. "Planning of step-stress accelerated degradation test based on the inverse Gaussian process," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 97-105.
    18. Xiang, Shihu & Zhao, Changdong & Hao, Songhua & Li, Kui & Li, Wenhua, 2023. "A reliability evaluation method for electromagnetic relays based on a novel degradation-threshold-shock model with two-sided failure thresholds," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    19. Hao, Songhua & Yang, Jun & Berenguer, Christophe, 2019. "Degradation analysis based on an extended inverse Gaussian process model with skew-normal random effects and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 261-270.
    20. Zhang, Jian-Xun & Zhang, Jia-Ling & Zhang, Zheng-Xin & Li, Tian-Mei & Si, Xiao-Sheng, 2024. "Remaining useful life prediction for stochastic degrading devices incorporating quantization," Reliability Engineering and System Safety, Elsevier, vol. 250(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:238:y:2024:i:1:p:93-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.