IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v170y2018icp244-256.html
   My bibliography  Save this article

Bayesian analysis of two-phase degradation data based on change-point Wiener process

Author

Listed:
  • Wang, Pingping
  • Tang, Yincai
  • Joo Bae, Suk
  • He, Yong

Abstract

In degradation test of some products such as plasma display panels (PDPs) and organic light emitting diodes (OLEDs), observed degradation paths tend to exhibit two-phase patterns over testing period. In this paper, we propose a change-point Wiener process (CPWP) model to fit the degradation paths with two-phase pattern mainly in a Bayesian framework. Considering the distinct degradation behaviors between testing units, we assume that degradation rates and change-points vary from unit to unit. Then hierarchical Bayesian approach is employed to estimate the parameters in the CPWP model. For comparison purpose, we also develop the maximum likelihood (ML) method. The results from simulation study show that the hierarchical Bayesian approach provides more robust inference on the model parameters than ML method. The analysis of OLED degradation data presents that the CPWP model outperforms three other existing models in terms of reliability prediction.

Suggested Citation

  • Wang, Pingping & Tang, Yincai & Joo Bae, Suk & He, Yong, 2018. "Bayesian analysis of two-phase degradation data based on change-point Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 244-256.
  • Handle: RePEc:eee:reensy:v:170:y:2018:i:c:p:244-256
    DOI: 10.1016/j.ress.2017.09.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201730265X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.09.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, X.-X. & Pandey, M.D., 2009. "A nonlinear mixed-effects model for degradation data obtained from in-service inspections," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 509-519.
    2. Haitao Liao & Elsayed A. Elsayed, 2006. "Reliability inference for field conditions from accelerated degradation testing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(6), pages 576-587, September.
    3. Bae, Suk Joo & Yuan, Tao & Ning, Shuluo & Kuo, Way, 2015. "A Bayesian approach to modeling two-phase degradation using change-point regression," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 66-74.
    4. Yuan, Tao & Bae, Suk Joo & Zhu, Xiaoyan, 2016. "A Bayesian approach to degradation-based burn-in optimization for display products exhibiting two-phase degradation patterns," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 55-63.
    5. Guo, Chiming & Wang, Wenbin & Guo, Bo & Si, Xiaosheng, 2013. "A maintenance optimization model for mission-oriented systems based on Wiener degradation," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 183-194.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haitham M. Yousof & Hafida Goual & Walid Emam & Yusra Tashkandy & Morad Alizadeh & M. Masoom Ali & Mohamed Ibrahim, 2023. "An Alternative Model for Describing the Reliability Data: Applications, Assessment, and Goodness-of-Fit Validation Testing," Mathematics, MDPI, vol. 11(6), pages 1-26, March.
    2. Wang, Xiaoyue & Ning, Ru & Zhao, Xian & Wu, Congshan, 2023. "Reliability assessments for two types of balanced systems with multi-state protective devices," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Zhang, Shuyi & Zhai, Qingqing & Li, Yaqiu, 2023. "Degradation modeling and RUL prediction with Wiener process considering measurable and unobservable external impacts," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    5. Ma, Jie & Cai, Li & Liao, Guobo & Yin, Hongpeng & Si, Xiaosheng & Zhang, Peng, 2023. "A multi-phase Wiener process-based degradation model with imperfect maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    6. Wenying Zeng & Songbai Song & Yan Kang & Xuan Gao & Rui Ma, 2022. "Response of Runoff to Meteorological Factors Based on Time-Varying Parameter Vector Autoregressive Model with Stochastic Volatility in Arid and Semi-Arid Area of Weihe River Basin," Sustainability, MDPI, vol. 14(12), pages 1-12, June.
    7. Ta, Yuntian & Li, Yanfeng & Cai, Wenan & Zhang, Qianqian & Wang, Zhijian & Dong, Lei & Du, Wenhua, 2023. "Adaptive staged remaining useful life prediction method based on multi-sensor and multi-feature fusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Hachem, Hassan & Vu, Hai Canh & Fouladirad, Mitra, 2024. "Different methods for RUL prediction considering sensor degradation," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    9. Xu, Ancha & Shen, Lijuan, 2018. "Improved on-line estimation for gamma process," Statistics & Probability Letters, Elsevier, vol. 143(C), pages 67-73.
    10. Hu, Changhua & Xing, Yuanxing & Du, Dangbo & Si, Xiaosheng & Zhang, Jianxun, 2023. "Remaining useful life estimation for two-phase nonlinear degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Liao, Guobo & Yin, Hongpeng & Chen, Min & Lin, Zheng, 2021. "Remaining useful life prediction for multi-phase deteriorating process based on Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    12. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    13. Hongyu Wang & Xiaobing Ma & Yu Zhao, 2020. "Bayesian inference for a novel hierarchical accelerated degradation model considering the mechanism variation," Journal of Risk and Reliability, , vol. 234(5), pages 708-720, October.
    14. Cai, Xia & Tian, Yubin & Ning, Wei, 2019. "Change-point analysis of the failure mechanisms based on accelerated life tests," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 515-522.
    15. Liu, Di & Wang, Shaoping, 2021. "An artificial neural network supported stochastic process for degradation modeling and prediction," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    16. Liu, Di & Wang, Shaoping, 2021. "Reliability estimation from lifetime testing data and degradation testing data with measurement error based on evidential variable and Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    17. Chen, Zhen & Li, Yaping & Zhou, Di & Xia, Tangbin & Pan, Ershun, 2021. "Two-phase degradation data analysis with change-point detection based on Gaussian process degradation model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Sun, Xuxue & Mraied, Hesham & Cai, Wenjun & Zhang, Qiong & Liang, Guoyuan & Li, Mingyang, 2018. "Bayesian latent degradation performance modeling and quantification of corroding aluminum alloys," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 84-96.
    3. Ye, Zhi-Sheng & Chen, Nan & Shen, Yan, 2015. "A new class of Wiener process models for degradation analysis," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 58-67.
    4. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    5. Peng, Weiwen & Li, Yan-Feng & Mi, Jinhua & Yu, Le & Huang, Hong-Zhong, 2016. "Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 75-87.
    6. Zhao, Xiujie & He, Shuguang & Xie, Min, 2018. "Utilizing experimental degradation data for warranty cost optimization under imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 108-119.
    7. Wen, Yuxin & Wu, Jianguo & Das, Devashish & Tseng, Tzu-Liang(Bill), 2018. "Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 113-124.
    8. Shen, Jingyuan & Cui, Lirong & Ma, Yizhong, 2019. "Availability and optimal maintenance policy for systems degrading in dynamic environments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 133-143.
    9. Zhai, Qingqing & Chen, Piao & Hong, Lanqing & Shen, Lijuan, 2018. "A random-effects Wiener degradation model based on accelerated failure time," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 94-103.
    10. Liu, Di & Wang, Shaoping, 2021. "An artificial neural network supported stochastic process for degradation modeling and prediction," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    11. Jiang, R., 2010. "Optimization of alarm threshold and sequential inspection scheme," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 208-215.
    12. Ma, Jie & Cai, Li & Liao, Guobo & Yin, Hongpeng & Si, Xiaosheng & Zhang, Peng, 2023. "A multi-phase Wiener process-based degradation model with imperfect maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    13. Guida, Maurizio & Postiglione, Fabio & Pulcini, Gianpaolo, 2015. "A random-effects model for long-term degradation analysis of solid oxide fuel cells," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 88-98.
    14. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    15. Zhao, Xiujie & Chen, Piao & Gaudoin, Olivier & Doyen, Laurent, 2021. "Accelerated degradation tests with inspection effects," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1099-1114.
    16. Liu, Bin & Wu, Shaomin & Xie, Min & Kuo, Way, 2017. "A condition-based maintenance policy for degrading systems with age- and state-dependent operating cost," European Journal of Operational Research, Elsevier, vol. 263(3), pages 879-887.
    17. Ao, Dan & Hu, Zhen & Mahadevan, Sankaran, 2017. "Design of validation experiments for life prediction models," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 22-33.
    18. Bui, Ha & Sakurahara, Tatsuya & Pence, Justin & Reihani, Seyed & Kee, Ernie & Mohaghegh, Zahra, 2019. "An algorithm for enhancing spatiotemporal resolution of probabilistic risk assessment to address emergent safety concerns in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 405-428.
    19. Zhai, Qingqing & Ye, Zhi-Sheng & Yang, Jun & Zhao, Yu, 2016. "Measurement errors in degradation-based burn-in," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 126-135.
    20. Fallahdizcheh, Amirhossein & Wang, Chao, 2022. "Transfer learning of degradation modeling and prognosis based on multivariate functional analysis with heterogeneous sampling rates," Reliability Engineering and System Safety, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:170:y:2018:i:c:p:244-256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.