IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023008116.html
   My bibliography  Save this article

Different methods for RUL prediction considering sensor degradation

Author

Listed:
  • Hachem, Hassan
  • Vu, Hai Canh
  • Fouladirad, Mitra

Abstract

Predicting the Remaining Useful Lifetime (RUL) of a system has become one of the primary goals of engineering and reliability researchers. RUL prediction is based on the measurement data collected from sensors (e.g. vibration data, temperature data). The collected data is may be inaccurate owing to sensor problems. These problems are often ignored or modeled by a Gaussian noise in most previous work. However, due to various operation circumstances and the aging impact, the sensor itself will ultimately deteriorate and its performance will deteriorate. The Gaussian noise with a constant mean is then not appropriate to fully capture the sensor degradation. In this context, this study focuses on predicting the RUL considering the sensor degradation. For this purpose, a joint model of sensor degradation and system degradation is firstly developed. In this model, the sensor degradation is modeled by Wiener and Gamma processes instead of Gaussian noise. Then, different estimation methods based on the particle filter, a popular model-based technique, were proposed to predict the RUL based on the joint degradation model. To study the performances of our methods, numerical analyzes were carried out. The obtained results confirm the performance and advantages of the proposed methods.

Suggested Citation

  • Hachem, Hassan & Vu, Hai Canh & Fouladirad, Mitra, 2024. "Different methods for RUL prediction considering sensor degradation," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023008116
    DOI: 10.1016/j.ress.2023.109897
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023008116
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023008116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.