IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v244y2024ics0951832024000012.html
   My bibliography  Save this article

RUL prediction for two-phase degrading systems considering physical damage observations

Author

Listed:
  • Cai, Xiao
  • Li, Naipeng
  • Xie, Min

Abstract

This paper focuses on a specific type of two-phase degrading system commonly encountered in industrial practice. The first phase is moderate with a low degradation rate while the second is rapid with a high rate. Current studies usually rely solely on sensor measurements to divide phases and predict the remaining useful life (RUL), ignoring the utilization of actual physical damage observations, such as wear depth and crack length. These observations, available during system shutdown periods, directly reflect system states and phase changes. To this end, we propose a novel RUL prediction framework consisting of offline training and online prediction processes. In the offline training process, the physical damage observations and sensor measurements are utilized to estimate the parameters of a two-phase Wiener process and a bijective function matrix. In the online prediction process, real-time sensor measurements are transformed into virtual damage observations for RUL prediction. To enhance the accuracy of phase change point detection, a change point detection algorithm is proposed for both processes. The effectiveness is demonstrated using a simulation and a real case study.

Suggested Citation

  • Cai, Xiao & Li, Naipeng & Xie, Min, 2024. "RUL prediction for two-phase degrading systems considering physical damage observations," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832024000012
    DOI: 10.1016/j.ress.2024.109926
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024000012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.109926?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832024000012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.