IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v255y2025ics0951832024007397.html
   My bibliography  Save this article

Image-based remaining useful life prediction through adaptation from simulation to experimental domain

Author

Listed:
  • Wang, Zhe
  • Yang, Lechang
  • Fang, Xiaolei
  • Zhang, Hanxiao
  • Xie, Min

Abstract

Degradation profoundly affects the performance of industrial systems, necessitating operational safety prognostics. However, the availability of run-to-failure data is often limited, and labels in real-world scenarios are scarce. To address the challenge, this work utilizes the simulation domain to extract degradation knowledge and then adaptively transfers this knowledge to the experimental domain, aiming at estimating the remaining useful life (RUL). The relative RUL in the simulation domain is adopted, focusing on the degradation trend and avoiding the determination of absolute RUL. The feature disentanglement technique captures degradation-relevant features. To improve model performance, Bayesian optimization is introduced to search for optimal hyperparameters, and a two-task learning approach is designed to achieve the objectives of both domains. A few labeled experimental samples are used to adjust the predictor to appropriate scale. The case study on infrared degradation image streams validates the effectiveness of this domain adaptation scheme. Further analysis and discussions demonstrate the superiority of the model and the associated optimization strategy.

Suggested Citation

  • Wang, Zhe & Yang, Lechang & Fang, Xiaolei & Zhang, Hanxiao & Xie, Min, 2025. "Image-based remaining useful life prediction through adaptation from simulation to experimental domain," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:reensy:v:255:y:2025:i:c:s0951832024007397
    DOI: 10.1016/j.ress.2024.110668
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024007397
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110668?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nejjar, Ismail & Geissmann, Fabian & Zhao, Mengjie & Taal, Cees & Fink, Olga, 2024. "Domain adaptation via alignment of operation profile for Remaining Useful Lifetime prediction," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Cai, Xiao & Li, Naipeng & Xie, Min, 2024. "RUL prediction for two-phase degrading systems considering physical damage observations," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    3. Xia, Min & Shao, Haidong & Williams, Darren & Lu, Siliang & Shu, Lei & de Silva, Clarence W., 2021. "Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Xu, Danyang & Qiu, Haobo & Gao, Liang & Yang, Zan & Wang, Dapeng, 2022. "A novel dual-stream self-attention neural network for remaining useful life estimation of mechanical systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Wang, Fujin & Zhao, Zhibin & Zhai, Zhi & Guo, Yanjie & Xi, Huan & Wang, Shibin & Chen, Xuefeng, 2023. "Feature disentanglement and tendency retainment with domain adaptation for Lithium-ion battery capacity estimation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Zhang, Jiusi & Li, Xiang & Tian, Jilun & Jiang, Yuchen & Luo, Hao & Yin, Shen, 2023. "A variational local weighted deep sub-domain adaptation network for remaining useful life prediction facing cross-domain condition," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    7. Zhu, Rong & Chen, Yuan & Peng, Weiwen & Ye, Zhi-Sheng, 2022. "Bayesian deep-learning for RUL prediction: An active learning perspective," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    8. Kong, Ziqian & Jin, Xiaohang & Xu, Zhengguo & Chen, Zian, 2023. "A contrastive learning framework enhanced by unlabeled samples for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Meng, Huixing & Geng, Mengyao & Han, Te, 2023. "Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    10. Li, Xin & Li, Yong & Yan, Ke & Shao, Haidong & (Jing) Lin, Janet, 2023. "Intelligent fault diagnosis of bevel gearboxes using semi-supervised probability support matrix machine and infrared imaging," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Wang, Jinrui & Zhang, Zongzhen & Liu, Zhiliang & Han, Baokun & Bao, Huaiqian & Ji, Shanshan, 2023. "Digital twin aided adversarial transfer learning method for domain adaptation fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xin & Jiang, Hongkai & Mu, Mingzhe & Dong, Yutong, 2025. "A dynamic collaborative adversarial domain adaptation network for unsupervised rotating machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    2. Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Fu, Song & Lin, Lin & Wang, Yue & Guo, Feng & Zhao, Minghang & Zhong, Baihong & Zhong, Shisheng, 2024. "MCA-DTCN: A novel dual-task temporal convolutional network with multi-channel attention for first prediction time detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Deng, Congying & Deng, Zihao & Miao, Jianguo, 2024. "Semi-supervised ensemble fault diagnosis method based on adversarial decoupled auto-encoder with extremely limited labels," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Gao, Dawei & Huang, Kai & Zhu, Yongsheng & Zhu, Linbo & Yan, Ke & Ren, Zhijun & Guedes Soares, C., 2024. "Semi-supervised small sample fault diagnosis under a wide range of speed variation conditions based on uncertainty analysis," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. Wang, Fujin & Wu, Ziqian & Zhao, Zhibin & Zhai, Zhi & Wang, Chenxi & Chen, Xuefeng, 2024. "Physical knowledge guided state of health estimation of lithium-ion battery with limited segment data," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    7. Hou, WanJun & Peng, Yizhen, 2023. "Adaptive ensemble gaussian process regression-driven degradation prognosis with applications to bearing degradation," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    8. Wang, Hui & Wang, Shuhui & Yang, Ronggang & Xiang, Jiawei, 2024. "An optimized dynamic model improved deep discriminative transfer learning network for fault detection in rotation vector reducers," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    9. Zhuang, Liangliang & Xu, Ancha & Wang, Xiao-Lin, 2023. "A prognostic driven predictive maintenance framework based on Bayesian deep learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Liu, Ruonan & Xie, Yunfei & Lin, Di & Zhang, Weidong & Ding, Steven X., 2024. "Information-based Gradient enhanced Causal Learning Graph Neural Network for fault diagnosis of complex industrial processes," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    11. Zhan, Yuling & Kong, Ziqian & Wang, Ziqi & Jin, Xiaohang & Xu, Zhengguo, 2024. "Remaining useful life prediction with uncertainty quantification based on multi-distribution fusion structure," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    12. Xiong, Jiawei & Zhou, Jian & Ma, Yizhong & Zhang, Fengxia & Lin, Chenglong, 2023. "Adaptive deep learning-based remaining useful life prediction framework for systems with multiple failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    13. Xia, Pengcheng & Huang, Yixiang & Tao, Zhiyu & Liu, Chengliang & Liu, Jie, 2023. "A digital twin-enhanced semi-supervised framework for motor fault diagnosis based on phase-contrastive current dot pattern," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    14. Tang, Shengnan & Zhu, Yong & Yuan, Shouqi, 2022. "Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    15. Tian, Jilun & Zhang, Jiusi & Jiang, Yuchen & Wu, Shimeng & Luo, Hao & Yin, Shen, 2024. "A novel generalized source-free domain adaptation approach for cross-domain industrial fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    16. Li, Xuanlin & Hu, Yawei & Wang, Hang & Liu, Yongbin & Liu, Xianzeng & Lu, Huitian, 2025. "A closed-form continuous-depth neural-based hybrid difference features re-representation network for RUL prediction," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    17. Liang, Pengfei & Wang, Xiangfeng & Ai, Chao & Hou, Dongming & Liu, Siyuan, 2025. "SRSGCN: A novel multi-sensor fault diagnosis method for hydraulic axial piston pump with limited data," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    18. Wang, Chenxi & Zhang, Yuxiang & Zhao, Zhibin & Chen, Xuefeng & Hu, Jiawei, 2024. "Dynamic model-assisted transferable network for liquid rocket engine fault diagnosis using limited fault samples," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    19. Basora, Luis & Viens, Arthur & Chao, Manuel Arias & Olive, Xavier, 2025. "A benchmark on uncertainty quantification for deep learning prognostics," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    20. Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:255:y:2025:i:c:s0951832024007397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.