IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023008050.html
   My bibliography  Save this article

A novel generalized source-free domain adaptation approach for cross-domain industrial fault diagnosis

Author

Listed:
  • Tian, Jilun
  • Zhang, Jiusi
  • Jiang, Yuchen
  • Wu, Shimeng
  • Luo, Hao
  • Yin, Shen

Abstract

Domain adaptation has been widely applied in data-driven fault diagnosis tasks to address the domain shift problem between source and target data. However, conventional domain adaptation methods require both domains to be known, which is not always feasible due to privacy concerns and big data transmission. To overcome this limitation, a dedicated method called source-free domain adaptation (SFDA) has been developed to ensure reliable performance without relying on source data during target model adaptation. SFDA can achieve accurate classification tasks under domain shift problems and source data-free scenarios. We propose a generalized source model with manifold Mixup data augmentation and label smoothing techniques to avoid overfitting during the source model training. Based on this model, a novel self-training framework is proposed to implement the domain adaptation task and achieve accurate prediction performance. The experimental results from three real-world datasets demonstrate the effectiveness of the proposed approach.

Suggested Citation

  • Tian, Jilun & Zhang, Jiusi & Jiang, Yuchen & Wu, Shimeng & Luo, Hao & Yin, Shen, 2024. "A novel generalized source-free domain adaptation approach for cross-domain industrial fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023008050
    DOI: 10.1016/j.ress.2023.109891
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023008050
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109891?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023008050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.