IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v257y2025ipas0951832025000511.html
   My bibliography  Save this article

An improved cross-machine transfer strategy based on multi-source domain knowledge for abnormal sample recognition

Author

Listed:
  • Yan, Zhenhao
  • Zhou, Bingqiang
  • Gao, Zenggui
  • Nong, Weiping
  • Liu, Lilan
  • Sun, Yanning

Abstract

Cross-machine transfer has garnered significant attention owing to its capacity to transfer diagnostic knowledge across different machines and address unforeseen operating conditions. Nevertheless, the personalized sample biases arising from industrial-specific conditions reduce the generalization performance of traditional cross-machine diagnostic methods. To address this, an enhanced cross-machine transfer strategy with multi-source domain knowledge (CMMK) is proposed for bearing fault diagnosis. Specifically, targeted training of model parameters is conducted to address the task challenges encountered in cross-device diagnosis. Multiple sets of source domain data are introduced for collaborative training, effectively mitigating feature discrepancies between samples from different distributions. To address ambiguous fault samples at class boundaries, adversarial training between independent task classifiers is incorporated, enabling precise fault identification under consistent working conditions. Furthermore, we introduce the custom threshold module and propose a novel residual block structure, which makes each residual block generate its own adversarial mechanism. Note that as the training progresses, the network parameters gradually evolve in a direction that aligns with the requirements of cross-device diagnosis. Finally, comprehensive experiments on extensive bearing fault datasets validate the superior diagnostic accuracy and generalization ability of the proposed CMMK compared to state-of-the-art methods.

Suggested Citation

  • Yan, Zhenhao & Zhou, Bingqiang & Gao, Zenggui & Nong, Weiping & Liu, Lilan & Sun, Yanning, 2025. "An improved cross-machine transfer strategy based on multi-source domain knowledge for abnormal sample recognition," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
  • Handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000511
    DOI: 10.1016/j.ress.2025.110848
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025000511
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ma, Yulin & Li, Lei & Yang, Jun, 2022. "Convolutional kernel aggregated domain adaptation for intelligent fault diagnosis with label noise," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    2. Wang, Changdong & Tian, Bowen & Yang, Jingli & Jie, Huamin & Chang, Yongqi & Zhao, Zhenyu, 2024. "Neural-transformer: A brain-inspired lightweight mechanical fault diagnosis method under noise," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    3. Li, Qi & Chen, Liang & Kong, Lin & Wang, Dong & Xia, Min & Shen, Changqing, 2023. "Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Cao, Yudong & Jia, Minping & Zhao, Xiaoli & Yan, Xiaoan & Feng, Ke, 2024. "Complex augmented representation network for transferable health prognosis of rolling bearing considering dynamic covariate shift," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Lee, Jinwook & Kim, Myungyon & Ko, Jin Uk & Jung, Joon Ha & Sun, Kyung Ho & Youn, Byeng D., 2022. "Asymmetric inter-intra domain alignments (AIIDA) method for intelligent fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    6. Zhao, Ke & Hu, Junchen & Shao, Haidong & Hu, Jiabei, 2023. "Federated multi-source domain adversarial adaptation framework for machinery fault diagnosis with data privacy," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    7. Wang, Rui & Huang, Weiguo & Lu, Yixiang & Zhang, Xiao & Wang, Jun & Ding, Chuancang & Shen, Changqing, 2023. "A novel domain generalization network with multidomain specific auxiliary classifiers for machinery fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    8. Theissler, Andreas & Pérez-Velázquez, Judith & Kettelgerdes, Marcel & Elger, Gordon, 2021. "Predictive maintenance enabled by machine learning: Use cases and challenges in the automotive industry," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Shi, Yaowei & Deng, Aidong & Deng, Minqiang & Xu, Meng & Liu, Yang & Ding, Xue & Bian, Wenbin, 2023. "Domain augmentation generalization network for real-time fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    10. Wang, Jinrui & Zhang, Zongzhen & Liu, Zhiliang & Han, Baokun & Bao, Huaiqian & Ji, Shanshan, 2023. "Digital twin aided adversarial transfer learning method for domain adaptation fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yu & Li, Xiangyu & Zhang, Jundong & Cheng, Ziyi, 2025. "SDCGAN: A CycleGAN-based single-domain generalization method for mechanical fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
    2. Zhang, Guowei & Kong, Xianguang & Wang, Qibin & Du, Jingli & Wang, Jinrui & Ma, Hongbo, 2024. "Single domain generalization method based on anti-causal learning for rotating machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    3. Tian, Jilun & Zhang, Jiusi & Jiang, Yuchen & Wu, Shimeng & Luo, Hao & Yin, Shen, 2024. "A novel generalized source-free domain adaptation approach for cross-domain industrial fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Ma, Hongbo & Wei, Jiacheng & Zhang, Guowei & Kong, Xianguang & Du, Jingli, 2024. "Causality-inspired multi-source domain generalization method for intelligent fault diagnosis under unknown operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    5. Gao, Lei & Gao, Qinhe & Liu, Zhihao & Cheng, Hongjie & Yao, Jianyong & Zhao, Xiaoli & Jia, Sixiang, 2025. "Multiple classifiers inconsistency-based deep adversarial domain generalization method for cross-condition fault diagnosis in rotating systems," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    6. Zheng, Xiaorong & Nie, Jiahao & He, Zhiwei & Li, Ping & Dong, Zhekang & Gao, Mingyu, 2024. "A fine-grained feature decoupling based multi-source domain adaptation network for rotating machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Huang, Kai & Ren, Zhijun & Zhu, Linbo & Lin, Tantao & Zhu, Yongsheng & Zeng, Li & Wan, Jin, 2025. "A three-stage bearing transfer fault diagnosis method for large domain shift scenarios," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    8. Gao, Tianyu & Yang, Jingli & Wang, Wenmin & Fan, Xiaopeng, 2024. "A domain feature decoupling network for rotating machinery fault diagnosis under unseen operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    9. Wang, Xin & Jiang, Hongkai & Mu, Mingzhe & Dong, Yutong, 2025. "A dynamic collaborative adversarial domain adaptation network for unsupervised rotating machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    10. Wang, Jun & Ren, He & Shen, Changqing & Huang, Weiguo & Zhu, Zhongkui, 2024. "Multi-scale style generative and adversarial contrastive networks for single domain generalization fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Kim, Yong Chae & Lee, Jinwook & Kim, Taehun & Baek, Jonghwa & Ko, Jin Uk & Jung, Joon Ha & Youn, Byeng D., 2024. "Gradient Alignment based Partial Domain Adaptation (GAPDA) using a domain knowledge filter for fault diagnosis of bearing," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    12. Wang, Zisheng & Xuan, Jianping & Shi, Tielin & Li, Yan-Fu, 2025. "Multi-label domain adversarial reinforcement learning for unsupervised compound fault recognition," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    13. Liu, Jianing & Cao, Hongrui & Luo, Yang, 2023. "An information-induced fault diagnosis framework generalizing from stationary to unknown nonstationary working conditions," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Chen, Pengfei & Zhao, Rongzhen & He, Tianjing & Wei, Kongyuan & Yuan, Jianhui, 2023. "A novel bearing fault diagnosis method based joint attention adversarial domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Zhang, Xiao & Huang, Weiguo & Wang, Jun & Zhu, Zhongkui & Shen, Changqing & Chen, Kai & Zhong, Xingli & He, Li, 2025. "Adaptive variational sampling-embedded domain generalization network for fault diagnosis with intra-inter-domain class imbalance," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    16. Wang, Xiaoyou & Jiao, Jinyang & Zhou, Xiaoqing & Xia, Yong, 2025. "Knowledge distillation-based domain generalization enabling invariant feature distributions for damage detection of rotating machines and structures," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    17. Hu, Kui & He, Qingbo & Cheng, Changming & Peng, Zhike, 2024. "Adaptive incremental diagnosis model for intelligent fault diagnosis with dynamic weight correction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    18. Guo, Chang & Shang, Zuogang & Ren, Jiaxin & Zhao, Zhibin & Ding, Baoqing & Wang, Shibin & Chen, Xuefeng, 2024. "CIS2N: Causal independence and sparse shift network for rotating machinery fault diagnosis in unseen domains," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    19. Azari, Mehdi Saman & Santini, Stefania & Edrisi, Farid & Flammini, Francesco, 2025. "Self-adaptive fault diagnosis for unseen working conditions based on digital twins and domain generalization," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    20. Xiao, Xiaoqi & Zhang, Jianguo & Xu, Dan, 2025. "Contrastive domain-invariant generalization for remaining useful life prediction under diverse conditions and fault modes," Reliability Engineering and System Safety, Elsevier, vol. 253(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.