IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v218y2022ipbs0951832021006700.html
   My bibliography  Save this article

Asymmetric inter-intra domain alignments (AIIDA) method for intelligent fault diagnosis of rotating machinery

Author

Listed:
  • Lee, Jinwook
  • Kim, Myungyon
  • Ko, Jin Uk
  • Jung, Joon Ha
  • Sun, Kyung Ho
  • Youn, Byeng D.

Abstract

Despite the recent success of deep-learning-based fault diagnosis of rotating machinery, to enable accurate and robust diagnosis models, existing approaches proceed with the assumption that training and test data follow the same distribution. However, in practical industrial settings, variations in operating conditions and environmental noise can cause changes in the characteristics of the training and test data, called domain shift, resulting in performance degradation of the test data. To deal with these issues, this paper proposes an asymmetric inter-intra domain alignments (AIIDA) approach for fault diagnosis under various levels of domain shift. First, inter-domain alignment is conducted by minimizing the maximum mean discrepancy loss and domain adversarial loss. Next, intra-domain alignment is performed by adjusting the inconsistency loss. This approach allows the proposed AIIDA method to learn features that have lower inter-domain distance and higher intra-domain distance; thus, the fault diagnosis performance in the target domain can be significantly improved. Extensive experimental assessment that examines various scenarios across three bearing datasets is performed to validate the effectiveness of the proposed approach. Furthermore, a study comparing the proposed method with other existing methods demonstrates that the proposed method outperforms other methods.

Suggested Citation

  • Lee, Jinwook & Kim, Myungyon & Ko, Jin Uk & Jung, Joon Ha & Sun, Kyung Ho & Youn, Byeng D., 2022. "Asymmetric inter-intra domain alignments (AIIDA) method for intelligent fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
  • Handle: RePEc:eee:reensy:v:218:y:2022:i:pb:s0951832021006700
    DOI: 10.1016/j.ress.2021.108186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021006700
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108186?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Rui & Verhagen, Wim J.C. & Curran, Richard, 2020. "A systematic methodology for Prognostic and Health Management system architecture definition," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    3. Gao, Shuzhi & Zhang, Sixuan & Zhang, Yimin & Gao, Yue, 2020. "Operational reliability evaluation and prediction of rolling bearing based on isometric mapping and NoCuSa-LSSVM," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    4. Tamilselvan, Prasanna & Wang, Pingfeng, 2013. "Failure diagnosis using deep belief learning based health state classification," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 124-135.
    5. Wang, Xu & Shen, Changqing & Xia, Min & Wang, Dong & Zhu, Jun & Zhu, Zhongkui, 2020. "Multi-scale deep intra-class transfer learning for bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. Jiao, Jinyang & Zhao, Ming & Lin, Jing & Liang, Kaixuan, 2019. "Hierarchical discriminating sparse coding for weak fault feature extraction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 41-54.
    7. Ahmad, Wasim & Khan, Sheraz Ali & Islam, M M Manjurul & Kim, Jong-Myon, 2019. "A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 67-76.
    8. Xia, Tangbin & Dong, Yifan & Xiao, Lei & Du, Shichang & Pan, Ershun & Xi, Lifeng, 2018. "Recent advances in prognostics and health management for advanced manufacturing paradigms," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 255-268.
    9. da Costa, Paulo Roberto de Oliveira & Akçay, Alp & Zhang, Yingqian & Kaymak, Uzay, 2020. "Remaining useful lifetime prediction via deep domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    10. Manjurul Islam, M.M. & Kim, Jong-Myon, 2019. "Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector Machines," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 55-66.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Qi & Chen, Liang & Kong, Lin & Wang, Dong & Xia, Min & Shen, Changqing, 2023. "Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Tan, Hongchuang & Xie, Suchao & Ma, Wen & Yang, Chengxing & Zheng, Shiwei, 2023. "Correlation feature distribution matching for fault diagnosis of machines," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Guo, Jianchun & Si, Zetian & Liu, Yi & Li, Jiahao & Li, Yanting & Xiang, Jiawei, 2022. "Dynamic time warping using graph similarity guided symplectic geometry mode decomposition to detect bearing faults," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    4. Wang, Jianyu & Zeng, Zhiguo & Zhang, Heng & Barros, Anne & Miao, Qiang, 2022. "An hybrid domain adaptation diagnostic network guided by curriculum pseudo labels for electro-mechanical actuator," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Xu, Yadong & Yan, Xiaoan & Sun, Beibei & Liu, Zheng, 2022. "Global contextual residual convolutional neural networks for motor fault diagnosis under variable-speed conditions," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Chen, Pengfei & Zhao, Rongzhen & He, Tianjing & Wei, Kongyuan & Yuan, Jianhui, 2023. "A novel bearing fault diagnosis method based joint attention adversarial domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Liu, Shaowei & Jiang, Hongkai & Wu, Zhenghong & Yi, Zichun & Wang, Ruixin, 2023. "Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Ma, Yulin & Li, Lei & Yang, Jun, 2022. "Convolutional kernel aggregated domain adaptation for intelligent fault diagnosis with label noise," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    9. Zhou, Taotao & Han, Te & Droguett, Enrique Lopez, 2022. "Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    10. Rombach, Katharina & Michau, Gabriel & Fink, Olga, 2023. "Controlled generation of unseen faults for Partial and Open-Partial domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Han, Te & Li, Yan-Fu, 2022. "Out-of-distribution detection-assisted trustworthy machinery fault diagnosis approach with uncertainty-aware deep ensembles," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    12. Xu, Yadong & Yan, Xiaoan & Sun, Beibei & Liu, Zheng, 2022. "Dually attentive multiscale networks for health state recognition of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    13. Park, Chan Hee & Kim, Hyeongmin & Suh, Chaehyun & Chae, Minseok & Yoon, Heonjun & Youn, Byeng D., 2022. "A health image for deep learning-based fault diagnosis of a permanent magnet synchronous motor under variable operating conditions: Instantaneous current residual map," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    14. Zhao, Chao & Shen, Weiming, 2022. "Adaptive open set domain generalization network: Learning to diagnose unknown faults under unknown working conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    15. Ma, Chenyang & Li, Yongbo & Wang, Xianzhi & Cai, Zhiqiang, 2023. "Early fault diagnosis of rotating machinery based on composite zoom permutation entropy," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    16. Zhang, Xingwu & Zhao, Yu & Yu, Xiaolei & Ma, Rui & Wang, Chenxi & Chen, Xuefeng, 2023. "Weighted domain separation based open set fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    17. Yu, Xiaolei & Zhao, Zhibin & Zhang, Xingwu & Chen, Xuefeng & Cai, Jianbing, 2023. "Statistical identification guided open-set domain adaptation in fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guan, Yang & Meng, Zong & Sun, Dengyun & Liu, Jingbo & Fan, Fengjie, 2021. "2MNet: Multi-sensor and multi-scale model toward accurate fault diagnosis of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Park, Chan Hee & Kim, Hyeongmin & Suh, Chaehyun & Chae, Minseok & Yoon, Heonjun & Youn, Byeng D., 2022. "A health image for deep learning-based fault diagnosis of a permanent magnet synchronous motor under variable operating conditions: Instantaneous current residual map," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Li, Xin & Yang, Yu & Wu, Zhantao & Yan, Ke & Shao, Haidong & Cheng, Junsheng, 2022. "High-accuracy gearbox health state recognition based on graph sparse random vector functional link network," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    4. Bai, Ruxue & Meng, Zong & Xu, Quansheng & Fan, Fengjie, 2023. "Fractional Fourier and time domain recurrence plot fusion combining convolutional neural network for bearing fault diagnosis under variable working conditions," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    5. Zuo, Lin & Xu, Fengjie & Zhang, Changhua & Xiahou, Tangfan & Liu, Yu, 2022. "A multi-layer spiking neural network-based approach to bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Zou, Xinyu & Tao, Laifa & Sun, Lulu & Wang, Chao & Ma, Jian & Lu, Chen, 2023. "A case-learning-based paradigm for quantitative recommendation of fault diagnosis algorithms: A case study of gearbox," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang & Xu, Kun, 2023. "Remaining useful life prediction combined dynamic model with transfer learning under insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    8. Li, Xin & Zhong, Xiang & Shao, Haidong & Han, Te & Shen, Changqing, 2021. "Multi-sensor gearbox fault diagnosis by using feature-fusion covariance matrix and multi-Riemannian kernel ridge regression," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Liu, Shaowei & Jiang, Hongkai & Wu, Zhenghong & Yi, Zichun & Wang, Ruixin, 2023. "Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    10. Ma, Chenyang & Li, Yongbo & Wang, Xianzhi & Cai, Zhiqiang, 2023. "Early fault diagnosis of rotating machinery based on composite zoom permutation entropy," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Hu, Yang & Miao, Xuewen & Si, Yong & Pan, Ershun & Zio, Enrico, 2022. "Prognostics and health management: A review from the perspectives of design, development and decision," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    12. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    13. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    14. Xiao, Lei & Tang, Junxuan & Zhang, Xinghui & Bechhoefer, Eric & Ding, Siyi, 2021. "Remaining useful life prediction based on intentional noise injection and feature reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    16. Zhang, Qing & Tang, Lv & Xuan, Jianping & Shi, Tielin & Li, Rui, 2023. "An uncertainty relevance metric-based domain adaptation fault diagnosis method to overcome class relevance caused confusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Wu, Jingyao & Zhao, Zhibin & Sun, Chuang & Yan, Ruqiang & Chen, Xuefeng, 2021. "Learning from Class-imbalanced Data with a Model-Agnostic Framework for Machine Intelligent Diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    18. Ma, Yulin & Li, Lei & Yang, Jun, 2022. "Convolutional kernel aggregated domain adaptation for intelligent fault diagnosis with label noise," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    19. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    20. Cheng, Han & Kong, Xianguang & Wang, Qibin & Ma, Hongbo & Yang, Shengkang, 2022. "The two-stage RUL prediction across operation conditions using deep transfer learning and insufficient degradation data," Reliability Engineering and System Safety, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:218:y:2022:i:pb:s0951832021006700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.