IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025002182.html
   My bibliography  Save this article

Multiple classifiers inconsistency-based deep adversarial domain generalization method for cross-condition fault diagnosis in rotating systems

Author

Listed:
  • Gao, Lei
  • Gao, Qinhe
  • Liu, Zhihao
  • Cheng, Hongjie
  • Yao, Jianyong
  • Zhao, Xiaoli
  • Jia, Sixiang

Abstract

Unknown fault operating conditions and the absence of fault data pose significant challenges for real-time fault diagnosis, as the generalization capability of models is heavily reliant on transferable knowledge from a single operating condition. To overcome these limitations, a novel deep adversarial domain generalization framework based on multiple classifiers inconsistency (DADG-MCI) is designed to improve generalized ability without the need for target domain data during training. Initially, unique features of the multiple source domains are captured through the probability output inconsistency of the multiple domain-specific classifiers. Subsequently, adversarial training facilitates finer-grained global feature alignment across multiple source domains, which ensures that the extracted deep features possess strong generalization capabilities. Most importantly, DADG-MCI introduces the multiple classifiers inconsistency to measure multi-domain distributional discrepancy based on Wasserstein distance, which captures feature distribution differences between domains through joint optimization of the multi-classifier module. Finally, two challenging rotating machinery fault datasets are used to evaluate the performance of DADG-MCI for cross-condition fault diagnosis. Compared to several state-of-the-art methods, DADG-MCI achieves the highest average diagnostic accuracies and successfully applies to unseen operating conditions.

Suggested Citation

  • Gao, Lei & Gao, Qinhe & Liu, Zhihao & Cheng, Hongjie & Yao, Jianyong & Zhao, Xiaoli & Jia, Sixiang, 2025. "Multiple classifiers inconsistency-based deep adversarial domain generalization method for cross-condition fault diagnosis in rotating systems," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002182
    DOI: 10.1016/j.ress.2025.111017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002182
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.