IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v260y2025ics0951832025002182.html
   My bibliography  Save this article

Multiple classifiers inconsistency-based deep adversarial domain generalization method for cross-condition fault diagnosis in rotating systems

Author

Listed:
  • Gao, Lei
  • Gao, Qinhe
  • Liu, Zhihao
  • Cheng, Hongjie
  • Yao, Jianyong
  • Zhao, Xiaoli
  • Jia, Sixiang

Abstract

Unknown fault operating conditions and the absence of fault data pose significant challenges for real-time fault diagnosis, as the generalization capability of models is heavily reliant on transferable knowledge from a single operating condition. To overcome these limitations, a novel deep adversarial domain generalization framework based on multiple classifiers inconsistency (DADG-MCI) is designed to improve generalized ability without the need for target domain data during training. Initially, unique features of the multiple source domains are captured through the probability output inconsistency of the multiple domain-specific classifiers. Subsequently, adversarial training facilitates finer-grained global feature alignment across multiple source domains, which ensures that the extracted deep features possess strong generalization capabilities. Most importantly, DADG-MCI introduces the multiple classifiers inconsistency to measure multi-domain distributional discrepancy based on Wasserstein distance, which captures feature distribution differences between domains through joint optimization of the multi-classifier module. Finally, two challenging rotating machinery fault datasets are used to evaluate the performance of DADG-MCI for cross-condition fault diagnosis. Compared to several state-of-the-art methods, DADG-MCI achieves the highest average diagnostic accuracies and successfully applies to unseen operating conditions.

Suggested Citation

  • Gao, Lei & Gao, Qinhe & Liu, Zhihao & Cheng, Hongjie & Yao, Jianyong & Zhao, Xiaoli & Jia, Sixiang, 2025. "Multiple classifiers inconsistency-based deep adversarial domain generalization method for cross-condition fault diagnosis in rotating systems," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002182
    DOI: 10.1016/j.ress.2025.111017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025002182
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.111017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jia, Sixiang & Sun, Dingyi & Noman, Khandaker & Wang, Xin & Li, Yongbo, 2025. "Lifting wavelet-informed hierarchical domain adaptation network: An interpretable digital twin-driven gearbox fault diagnosis method," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    2. Li, Qi & Chen, Liang & Kong, Lin & Wang, Dong & Xia, Min & Shen, Changqing, 2023. "Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Wang, Jun & Ren, He & Shen, Changqing & Huang, Weiguo & Zhu, Zhongkui, 2024. "Multi-scale style generative and adversarial contrastive networks for single domain generalization fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Steven N. Evans & Frederick A. Matsen, 2012. "The phylogenetic Kantorovich–Rubinstein metric for environmental sequence samples," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(3), pages 569-592, June.
    5. Shi, Yaowei & Deng, Aidong & Deng, Minqiang & Xu, Meng & Liu, Yang & Ding, Xue & Bian, Wenbin, 2023. "Domain augmentation generalization network for real-time fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    6. Li, Xin & Li, Shuhua & Wei, Dong & Si, Lei & Yu, Kun & Yan, Ke, 2024. "Dynamics simulation-driven fault diagnosis of rolling bearings using security transfer support matrix machine," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Wang, Jinrui & Zhang, Zongzhen & Liu, Zhiliang & Han, Baokun & Bao, Huaiqian & Ji, Shanshan, 2023. "Digital twin aided adversarial transfer learning method for domain adaptation fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. Liu, Shaowei & Jiang, Hongkai & Wu, Zhenghong & Yi, Zichun & Wang, Ruixin, 2023. "Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yu & Li, Xiangyu & Zhang, Jundong & Cheng, Ziyi, 2025. "SDCGAN: A CycleGAN-based single-domain generalization method for mechanical fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
    2. Wang, Zisheng & Xuan, Jianping & Shi, Tielin & Li, Yan-Fu, 2025. "Multi-label domain adversarial reinforcement learning for unsupervised compound fault recognition," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    3. Ma, Hongbo & Wei, Jiacheng & Zhang, Guowei & Kong, Xianguang & Du, Jingli, 2024. "Causality-inspired multi-source domain generalization method for intelligent fault diagnosis under unknown operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    4. Yan, Zhenhao & Zhou, Bingqiang & Gao, Zenggui & Nong, Weiping & Liu, Lilan & Sun, Yanning, 2025. "An improved cross-machine transfer strategy based on multi-source domain knowledge for abnormal sample recognition," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    5. Wang, Xiaoyou & Jiao, Jinyang & Zhou, Xiaoqing & Xia, Yong, 2025. "Knowledge distillation-based domain generalization enabling invariant feature distributions for damage detection of rotating machines and structures," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    6. Zheng, Xiaorong & Nie, Jiahao & He, Zhiwei & Li, Ping & Dong, Zhekang & Gao, Mingyu, 2024. "A fine-grained feature decoupling based multi-source domain adaptation network for rotating machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Guo, Chang & Shang, Zuogang & Ren, Jiaxin & Zhao, Zhibin & Ding, Baoqing & Wang, Shibin & Chen, Xuefeng, 2024. "CIS2N: Causal independence and sparse shift network for rotating machinery fault diagnosis in unseen domains," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    8. Huang, Kai & Ren, Zhijun & Zhu, Linbo & Lin, Tantao & Zhu, Yongsheng & Zeng, Li & Wan, Jin, 2025. "A three-stage bearing transfer fault diagnosis method for large domain shift scenarios," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    9. Zhang, Guowei & Kong, Xianguang & Wang, Qibin & Du, Jingli & Wang, Jinrui & Ma, Hongbo, 2024. "Single domain generalization method based on anti-causal learning for rotating machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    10. Tian, Jilun & Zhang, Jiusi & Jiang, Yuchen & Wu, Shimeng & Luo, Hao & Yin, Shen, 2024. "A novel generalized source-free domain adaptation approach for cross-domain industrial fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Azari, Mehdi Saman & Santini, Stefania & Edrisi, Farid & Flammini, Francesco, 2025. "Self-adaptive fault diagnosis for unseen working conditions based on digital twins and domain generalization," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    12. Xiao, Xiaoqi & Zhang, Jianguo & Xu, Dan, 2025. "Contrastive domain-invariant generalization for remaining useful life prediction under diverse conditions and fault modes," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    13. Liu, Jianing & Cao, Hongrui & Luo, Yang, 2023. "An information-induced fault diagnosis framework generalizing from stationary to unknown nonstationary working conditions," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Zhang, Xiao & Huang, Weiguo & Wang, Jun & Zhu, Zhongkui & Shen, Changqing & Chen, Kai & Zhong, Xingli & He, Li, 2025. "Adaptive variational sampling-embedded domain generalization network for fault diagnosis with intra-inter-domain class imbalance," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    15. Hu, Kui & He, Qingbo & Cheng, Changming & Peng, Zhike, 2024. "Adaptive incremental diagnosis model for intelligent fault diagnosis with dynamic weight correction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    16. Gao, Tianyu & Yang, Jingli & Wang, Wenmin & Fan, Xiaopeng, 2024. "A domain feature decoupling network for rotating machinery fault diagnosis under unseen operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    17. Zhang, Qing & Li, Shaochen & Chin-Hon, Tan & Liu, Xiaofei & Shen, Jingyuan & Shi, Tielin & Xuan, Jianping, 2025. "Fault Impulse Inference and Cyclostationary Approximation: A feature-interpretable intelligent fault detection method for few-shot unsupervised domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    18. Wang, Jun & Ren, He & Shen, Changqing & Huang, Weiguo & Zhu, Zhongkui, 2024. "Multi-scale style generative and adversarial contrastive networks for single domain generalization fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    19. Li, Zhenning & Jiang, Hongkai & Wang, Xin, 2025. "A novel reinforcement learning agent for rotating machinery fault diagnosis with data augmentation," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    20. Yu, Tian & Li, Chaoshun & Huang, Jie & Xiao, Xiangqu & Zhang, Xiaoyuan & Li, Yuhong & Fu, Bitao, 2024. "ReF-DDPM: A novel DDPM-based data augmentation method for imbalanced rolling bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:260:y:2025:i:c:s0951832025002182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.