IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v254y2025ipbs0951832024007312.html
   My bibliography  Save this article

Lifting wavelet-informed hierarchical domain adaptation network: An interpretable digital twin-driven gearbox fault diagnosis method

Author

Listed:
  • Jia, Sixiang
  • Sun, Dingyi
  • Noman, Khandaker
  • Wang, Xin
  • Li, Yongbo

Abstract

Digital twin (DT) has served as a dependable technology for supplementing reliable simulated fault data in gearbox fault diagnosis. However, the vast data distribution discrepancy and insufficient interpretability still significantly limit the industrial application of DT-driven fault diagnosis methods. To solve these problems, a lifting wavelet-informed hierarchical domain adaptation network (LHDAN) is proposed for transferring the diagnostic knowledge between the physical gearbox and DT model. LHDAN improves the interpretability of diagnostic knowledge transfer in terms of parameter initialization, physical constraints on the training process, and feature distribution adaptation. Specifically, LHDAN utilizes a lifting wavelet-informed convolutional neural network (LW-Conv) to mimic the cascade structure of lifting wavelet decomposition, in which the fully learnable prediction and update operators are initialized with existing wavelet bases and further constrained with high-pass and low-pass filters in the training process. Furthermore, a kurtosis-guided attention mechanism is proposed to fuse hierarchical features with diverse transferabilities flexibly. Finally, the fused hierarchical features of the actual gearbox and DT model are explicitly aligned to eliminate the feature distribution discrepancies. A high-fidelity DT model is established based on an industrial gearbox fault test bench. Compared to several state-of-the-art models, LHDAN demonstrates superior interpretability and diagnostic performance.

Suggested Citation

  • Jia, Sixiang & Sun, Dingyi & Noman, Khandaker & Wang, Xin & Li, Yongbo, 2025. "Lifting wavelet-informed hierarchical domain adaptation network: An interpretable digital twin-driven gearbox fault diagnosis method," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
  • Handle: RePEc:eee:reensy:v:254:y:2025:i:pb:s0951832024007312
    DOI: 10.1016/j.ress.2024.110660
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024007312
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jie & Xu, Huoyao & Peng, Xiangyu & Wang, Junlang & He, Chaoming, 2023. "Reliable composite fault diagnosis of hydraulic systems based on linear discriminant analysis and multi-output hybrid kernel extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Wang, Jinrui & Zhang, Zongzhen & Liu, Zhiliang & Han, Baokun & Bao, Huaiqian & Ji, Shanshan, 2023. "Digital twin aided adversarial transfer learning method for domain adaptation fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Xia, Jingyan & Huang, Ruyi & Chen, Zhuyun & He, Guolin & Li, Weihua, 2023. "A novel digital twin-driven approach based on physical-virtual data fusion for gearbox fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    4. Qianhui Wu & Keqin Ding & Biqing Huang, 2020. "Approach for fault prognosis using recurrent neural network," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1621-1633, October.
    5. Zhang, Yongchao & Ji, J.C. & Ren, Zhaohui & Ni, Qing & Gu, Fengshou & Feng, Ke & Yu, Kun & Ge, Jian & Lei, Zihao & Liu, Zheng, 2023. "Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Li, Sheng & Ji, J.C. & Xu, Yadong & Sun, Xiuquan & Feng, Ke & Sun, Beibei & Wang, Yulin & Gu, Fengshou & Zhang, Ke & Ni, Qing, 2023. "IFD-MDCN: Multibranch denoising convolutional networks with improved flow direction strategy for intelligent fault diagnosis of rolling bearings under noisy conditions," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Dai, Menghang & Liu, Zhiliang & Wang, Jinrui & Zuo, Mingjian, 2024. "Physics-driven feature alignment combined with dynamic distribution adaptation for three-cylinder drilling pump cross-speed fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    3. Deng, Congying & Deng, Zihao & Miao, Jianguo, 2024. "Semi-supervised ensemble fault diagnosis method based on adversarial decoupled auto-encoder with extremely limited labels," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Yan, Shen & Zhong, Xiang & Shao, Haidong & Ming, Yuhang & Liu, Chao & Liu, Bin, 2023. "Digital twin-assisted imbalanced fault diagnosis framework using subdomain adaptive mechanism and margin-aware regularization," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    5. Miao, Mengqi & Yu, Jianbo, 2024. "Deep feature interactive network for machinery fault diagnosis using multi-source heterogeneous data," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. Zhang, Guowei & Kong, Xianguang & Wang, Qibin & Du, Jingli & Wang, Jinrui & Ma, Hongbo, 2024. "Single domain generalization method based on anti-causal learning for rotating machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    7. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    8. Liang, Pengfei & Tian, Jiaye & Wang, Suiyan & Yuan, Xiaoming, 2024. "Multi-source information joint transfer diagnosis for rolling bearing with unknown faults via wavelet transform and an improved domain adaptation network," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    9. Yu, Tian & Li, Chaoshun & Huang, Jie & Xiao, Xiangqu & Zhang, Xiaoyuan & Li, Yuhong & Fu, Bitao, 2024. "ReF-DDPM: A novel DDPM-based data augmentation method for imbalanced rolling bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    10. Chen, Edward & Bao, Han & Dinh, Nam, 2024. "Evaluating the reliability of machine-learning-based predictions used in nuclear power plant instrumentation and control systems," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    11. Wang, Zisheng & Xuan, Jianping & Shi, Tielin & Li, Yan-Fu, 2025. "Multi-label domain adversarial reinforcement learning for unsupervised compound fault recognition," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    12. Liao, Zengbu & Zhan, Keyi & Zhao, Hang & Deng, Yuntao & Geng, Jia & Chen, Xuefeng & Song, Zhiping, 2024. "Addressing class-imbalanced learning in real-time aero-engine gas-path fault diagnosis via feature filtering and mapping," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    13. Hongquan Gui & Jialan Liu & Chi Ma & Mengyuan Li, 2024. "Industrial-oriented machine learning big data framework for temporal-spatial error prediction and control with DTSMGCN model," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 1173-1196, March.
    14. Zhengyang Fan & Wanru Li & Kuo-Chu Chang, 2023. "A Bidirectional Long Short-Term Memory Autoencoder Transformer for Remaining Useful Life Estimation," Mathematics, MDPI, vol. 11(24), pages 1-17, December.
    15. Yi Zhang & Peng Peng & Chongdang Liu & Yanyan Xu & Heming Zhang, 2022. "A sequential resampling approach for imbalanced batch process fault detection in semiconductor manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1057-1072, April.
    16. Xie, Bin & Wang, Yanzhong & Zhu, Yunyi & Liu, Peng & Wu, Yu & Lu, Fengxia, 2024. "Time-variant reliability analysis of angular contact ball bearing considering the coupled effect of rolling contact fatigue damage and wear," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    17. Wang, Mengmeng & Incecik, Atilla & Feng, Shizhe & Gupta, M.K. & Królczyk, Grzegorz & Li, Z, 2023. "Damage identification of offshore jacket platforms in a digital twin framework considering optimal sensor placement," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    18. Mandelli, Diego & Wang, Congjian & Agarwal, Vivek & Lin, Linyu & Manjunatha, Koushik A., 2024. "Reliability modeling in a predictive maintenance context: A margin-based approach," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    19. Fu, Song & Zou, Limin & Wang, Yue & Lin, Lin & Lu, Yifan & Zhao, Minghang & Guo, Feng & Zhong, Shisheng, 2024. "DCSIAN: A novel deep cross-scale interactive attention network for fault diagnosis of aviation hydraulic pumps and generalizable applications," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    20. Yu Mo & Liang Li & Biqing Huang & Xiu Li, 2023. "Few-shot RUL estimation based on model-agnostic meta-learning," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2359-2372, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:254:y:2025:i:pb:s0951832024007312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.