IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v242y2024ics0951832023007093.html
   My bibliography  Save this article

Deep feature interactive network for machinery fault diagnosis using multi-source heterogeneous data

Author

Listed:
  • Miao, Mengqi
  • Yu, Jianbo

Abstract

Infrared thermal images have been applied for monitoring health condition of machines due to the noncontact and nonintrusive manner. While fault diagnosis performance of those deep neural networks (DNNs) that use infrared thermal images is restricted by the information learned from single sensor. In this study, multi-source heterogeneous data (i.e., infrared thermal images and vibration signals) are used for machinery fault diagnosis. A new DNN, i.e., deep feature interactive network (DFINet) is proposed for machinery fault diagnosis, where a novel interactive feature extraction module is developed for adaptive feature fusion on multi-source heterogeneous data. Firstly, the private and public features of multi-source heterogeneous data are extracted separately by measuring the distribution discrepancy between heterogeneous features in the feature interactive module. The feature splicing is implemented to interactively fuse common fault features of heterogeneous data and to preserve private unique features. A global feature fusion module is further proposed for adaptive fusion of superficial local features and deep abstract features learned by different feature interactive modules. The experimental results on a rotor test-bed and gearbox test-bed indicate that DFINet is promising for fusion and feature extraction on multi-source heterogeneous data in machinery fault diagnosis.

Suggested Citation

  • Miao, Mengqi & Yu, Jianbo, 2024. "Deep feature interactive network for machinery fault diagnosis using multi-source heterogeneous data," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023007093
    DOI: 10.1016/j.ress.2023.109795
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023007093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109795?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Yadong & Yan, Xiaoan & Feng, Ke & Sheng, Xin & Sun, Beibei & Liu, Zheng, 2022. "Attention-based multiscale denoising residual convolutional neural networks for fault diagnosis of rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Liu, Jie & Xu, Huoyao & Peng, Xiangyu & Wang, Junlang & He, Chaoming, 2023. "Reliable composite fault diagnosis of hydraulic systems based on linear discriminant analysis and multi-output hybrid kernel extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Li, Xin & Li, Yong & Yan, Ke & Shao, Haidong & (Jing) Lin, Janet, 2023. "Intelligent fault diagnosis of bevel gearboxes using semi-supervised probability support matrix machine and infrared imaging," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Zhang, Yongchao & Ji, J.C. & Ren, Zhaohui & Ni, Qing & Gu, Fengshou & Feng, Ke & Yu, Kun & Ge, Jian & Lei, Zihao & Liu, Zheng, 2023. "Digital twin-driven partial domain adaptation network for intelligent fault diagnosis of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Congying & Deng, Zihao & Miao, Jianguo, 2024. "Semi-supervised ensemble fault diagnosis method based on adversarial decoupled auto-encoder with extremely limited labels," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Gao, Dawei & Huang, Kai & Zhu, Yongsheng & Zhu, Linbo & Yan, Ke & Ren, Zhijun & Guedes Soares, C., 2024. "Semi-supervised small sample fault diagnosis under a wide range of speed variation conditions based on uncertainty analysis," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Li, Xin & Li, Shuhua & Wei, Dong & Si, Lei & Yu, Kun & Yan, Ke, 2024. "Dynamics simulation-driven fault diagnosis of rolling bearings using security transfer support matrix machine," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Ni, Qing & Ji, J.C. & Feng, Ke & Zhang, Yongchao & Lin, Dongdong & Zheng, Jinde, 2024. "Data-driven bearing health management using a novel multi-scale fused feature and gated recurrent unit," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Liang, Pengfei & Tian, Jiaye & Wang, Suiyan & Yuan, Xiaoming, 2024. "Multi-source information joint transfer diagnosis for rolling bearing with unknown faults via wavelet transform and an improved domain adaptation network," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. Zou, Xinyu & Tao, Laifa & Sun, Lulu & Wang, Chao & Ma, Jian & Lu, Chen, 2023. "A case-learning-based paradigm for quantitative recommendation of fault diagnosis algorithms: A case study of gearbox," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Yan, Shen & Zhong, Xiang & Shao, Haidong & Ming, Yuhang & Liu, Chao & Liu, Bin, 2023. "Digital twin-assisted imbalanced fault diagnosis framework using subdomain adaptive mechanism and margin-aware regularization," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    8. Xie, Bin & Wang, Yanzhong & Zhu, Yunyi & Liu, Peng & Wu, Yu & Lu, Fengxia, 2024. "Time-variant reliability analysis of angular contact ball bearing considering the coupled effect of rolling contact fatigue damage and wear," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Wang, Mengmeng & Incecik, Atilla & Feng, Shizhe & Gupta, M.K. & Królczyk, Grzegorz & Li, Z, 2023. "Damage identification of offshore jacket platforms in a digital twin framework considering optimal sensor placement," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Dong, Yutong & Jiang, Hongkai & Yao, Renhe & Mu, Mingzhe & Yang, Qiao, 2024. "Rolling bearing intelligent fault diagnosis towards variable speed and imbalanced samples using multiscale dynamic supervised contrast learning," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Li, Sai & Peng, Yanfeng & Shen, Yiping & Zhao, Sibo & Shao, Haidong & Bin, Guangfu & Guo, Yong & Yang, Xingkai & Fan, Chao, 2024. "Rolling Bearing Fault Diagnosis Under Data Imbalance and Variable Speed Based on Adaptive Clustering Weighted Oversampling," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    12. Xiong, Jiawei & Zhou, Jian & Ma, Yizhong & Zhang, Fengxia & Lin, Chenglong, 2023. "Adaptive deep learning-based remaining useful life prediction framework for systems with multiple failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    13. Xia, Pengcheng & Huang, Yixiang & Tao, Zhiyu & Liu, Chengliang & Liu, Jie, 2023. "A digital twin-enhanced semi-supervised framework for motor fault diagnosis based on phase-contrastive current dot pattern," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    14. Li, Sheng & Ji, J.C. & Xu, Yadong & Sun, Xiuquan & Feng, Ke & Sun, Beibei & Wang, Yulin & Gu, Fengshou & Zhang, Ke & Ni, Qing, 2023. "IFD-MDCN: Multibranch denoising convolutional networks with improved flow direction strategy for intelligent fault diagnosis of rolling bearings under noisy conditions," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Ma, Chenyang & Wang, Xianzhi & Li, Yongbo & Cai, Zhiqiang, 2024. "Broad zero-shot diagnosis for rotating machinery with untrained compound faults," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    16. Xu, Yadong & Yan, Xiaoan & Feng, Ke & Zhang, Yongchao & Zhao, Xiaoli & Sun, Beibei & Liu, Zheng, 2023. "Global contextual multiscale fusion networks for machine health state identification under noisy and imbalanced conditions," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Chen, Jiayu. & Lin, Cuiyin & Yao, Boqing & Yang, Lechang & Ge, Hongjuan, 2023. "Intelligent fault diagnosis of rolling bearings with low-quality data: A feature significance and diversity learning method," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023007093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.