IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v176y2018icp113-124.html
   My bibliography  Save this article

Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity

Author

Listed:
  • Wen, Yuxin
  • Wu, Jianguo
  • Das, Devashish
  • Tseng, Tzu-Liang(Bill)

Abstract

Degradation modeling is critical for health condition monitoring and remaining useful life prediction (RUL). The prognostic accuracy highly depends on the capability of modeling the evolution of degradation signals. In many practical applications, however, the degradation signals show multiple phases, where the conventional degradation models are often inadequate. To better characterize the degradation signals of multiple-phase characteristics, we propose a multiple change-point Wiener process as a degradation model. To take into account the between-unit heterogeneity, a fully Bayesian approach is developed where all model parameters are assumed random. At the offline stage, an empirical two-stage process is proposed for model estimation, and a cross-validation approach is adopted for model selection. At the online stage, an exact recursive model updating algorithm is developed for online individual model estimation, and an effective Monte Carlo simulation approach is proposed for RUL prediction. The effectiveness of the proposed method is demonstrated through thorough simulation studies and real case study.

Suggested Citation

  • Wen, Yuxin & Wu, Jianguo & Das, Devashish & Tseng, Tzu-Liang(Bill), 2018. "Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 113-124.
  • Handle: RePEc:eee:reensy:v:176:y:2018:i:c:p:113-124
    DOI: 10.1016/j.ress.2018.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017313625
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Vališ, David & Žák, Libor & Pokora, Ondřej & Lánský, Petr, 2016. "Perspective analysis outcomes of selected tribodiagnostic data used as input for condition based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 231-242.
    2. David Vališ & Libor Žák & Ondřej Pokora, 2015. "Contribution to system failure occurrence prediction and to system remaining useful life estimation based on oil field data," Journal of Risk and Reliability, , vol. 229(1), pages 36-45, February.
    3. Pan, Zhengqiang & Balakrishnan, Narayanaswamy, 2011. "Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 949-957.
    4. Zhi‐Sheng Ye & Min Xie, 2015. "Stochastic modelling and analysis of degradation for highly reliable products," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(1), pages 16-32, January.
    5. Heonsang Lim & Bong-Jin Yum, 2011. "Optimal design of accelerated degradation tests based on Wiener process models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(2), pages 309-325, September.
    6. Wei-an Yan & Bao-wei Song & Gui-lin Duan & Yi-min Shi, 2017. "Real-time reliability evaluation of two-phase Wiener degradation process," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(1), pages 176-188, January.
    7. Nan Chen & Kwok Tsui, 2013. "Condition monitoring and remaining useful life prediction using degradation signals: revisited," IISE Transactions, Taylor & Francis Journals, vol. 45(9), pages 939-952.
    8. Linkan Bian & Nagi Gebraeel & Jeffrey P. Kharoufeh, 2015. "Degradation modeling for real-time estimation of residual lifetimes in dynamic environments," IISE Transactions, Taylor & Francis Journals, vol. 47(5), pages 471-486, May.
    9. Bae, Suk Joo & Yuan, Tao & Ning, Shuluo & Kuo, Way, 2015. "A Bayesian approach to modeling two-phase degradation using change-point regression," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 66-74.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Jian & Li, Zhanhang & Nassif, Hani & Coit, David W., 2025. "A two-stage Weibull-gamma degradation model with distinct failure mechanism initiation and propagation stages," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    2. Ling, M.H. & Ng, H.K.T. & Tsui, K.L., 2019. "Bayesian and likelihood inferences on remaining useful life in two-phase degradation models under gamma process," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 77-85.
    3. Kim, Seong-Joon & Mun, Byeong Min & Bae, Suk Joo, 2019. "A cost-driven reliability demonstration plan based on accelerated degradation tests," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 226-239.
    4. Peihua Jiang, 2022. "Statistical Inference of Wiener Constant-Stress Accelerated Degradation Model with Random Effects," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    5. Gao, Hongda & Cui, Lirong & Dong, Qinglai, 2020. "Reliability modeling for a two-phase degradation system with a change point based on a Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    6. Zhuang, Liangliang & Xu, Ancha & Wang, Yijun & Tang, Yincai, 2024. "Remaining useful life prediction for two-phase degradation model based on reparameterized inverse Gaussian process," European Journal of Operational Research, Elsevier, vol. 319(3), pages 877-890.
    7. Shu, Yin & Feng, Qianmei & Liu, Hao, 2019. "Using degradation-with-jump measures to estimate life characteristics of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    8. Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    9. Zhao, Xiujie & Chen, Piao & Gaudoin, Olivier & Doyen, Laurent, 2021. "Accelerated degradation tests with inspection effects," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1099-1114.
    10. Chen, Zhen & Li, Yaping & Zhou, Di & Xia, Tangbin & Pan, Ershun, 2021. "Two-phase degradation data analysis with change-point detection based on Gaussian process degradation model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Kong, Dejing & Qin, Chengwei & He, Yong & Cui, Lirong, 2017. "Sensor-based calibrations to improve reliability of systems subject to multiple dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 101-113.
    12. Song, Kai & Cui, Lirong, 2022. "A common random effect induced bivariate gamma degradation process with application to remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    13. Le Liu & Xiao-Yang Li & Enrico Zio & Rui Kang & Tong-Min Jiang, 2017. "Model Uncertainty in Accelerated Degradation Testing Analysis," Post-Print hal-01652218, HAL.
    14. Cao, Shihao & Wang, Zhihua & Wu, Qiong & Ouyang, Xiangmin & Si, Xiaosheng & Liu, Chengrui, 2025. "Failure time analysis for compound degradation procedures involving linear path and negative jumps," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    15. Abdenour Soualhi & Mourad Lamraoui & Bilal Elyousfi & Hubert Razik, 2022. "PHM SURVEY: Implementation of Prognostic Methods for Monitoring Industrial Systems," Energies, MDPI, vol. 15(19), pages 1-24, September.
    16. Junyu Guo & Hong-Zhong Huang & Weiwen Peng & Jie Zhou, 2019. "Bayesian information fusion for degradation analysis of deteriorating products with individual heterogeneity," Journal of Risk and Reliability, , vol. 233(4), pages 615-622, August.
    17. Wang, Han & Zhao, Yu & Ma, Xiaobing & Wang, Hongyu, 2017. "Optimal design of constant-stress accelerated degradation tests using the M-optimality criterion," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 45-54.
    18. Yong Soo Kim & Si-Il Sung, 2017. "Practical lifetime estimation strategy based on partially step-stress-accelerated degradation tests," Journal of Risk and Reliability, , vol. 231(5), pages 605-614, October.
    19. Ghamlouch, Houda & Fouladirad, Mitra & Grall, Antoine, 2019. "The use of real option in condition-based maintenance scheduling for wind turbines with production and deterioration uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 614-623.
    20. Gao, Hongda & Cui, Lirong & Qiu, Qingan, 2019. "Reliability modeling for degradation-shock dependence systems with multiple species of shocks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 133-143.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:176:y:2018:i:c:p:113-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.