IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v233y2019i4p615-622.html
   My bibliography  Save this article

Bayesian information fusion for degradation analysis of deteriorating products with individual heterogeneity

Author

Listed:
  • Junyu Guo
  • Hong-Zhong Huang
  • Weiwen Peng
  • Jie Zhou

Abstract

Degradation analysis is a popular and effective method for reliability analysis of long-life and high-reliability products. However, for newly developed products, especially for highly customized products with small sample size, the challenge of sparse degradation observations with product heterogeneity is still an open issue deserving further research. In this article, Bayesian degradation analysis is presented for reliability analysis of products with heterogeneity. The degradation process is modeled by a Gamma process. Random effects are incorporated in the Gamma process model for characterizing the individual heterogeneity. To improve the precision of parameter estimation and degradation analysis, a Bayesian information fusion is presented to leverage degradation information from multiple sources. The proposed model is demonstrated through degradation-based reliability analysis of heavy-duty machine tool’s spindle system, which is characterized as degradation analysis with individual heterogeneity and information fusion.

Suggested Citation

  • Junyu Guo & Hong-Zhong Huang & Weiwen Peng & Jie Zhou, 2019. "Bayesian information fusion for degradation analysis of deteriorating products with individual heterogeneity," Journal of Risk and Reliability, , vol. 233(4), pages 615-622, August.
  • Handle: RePEc:sae:risrel:v:233:y:2019:i:4:p:615-622
    DOI: 10.1177/1748006X18808964
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X18808964
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X18808964?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li, Mingyang & Liu, Jian & Li, Jing & Uk Kim, Byoung, 2014. "Bayesian modeling of multi-state hierarchical systems with multi-level information aggregation," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 158-164.
    2. Wang, Wenbin & Hussin, B. & Jefferis, Tim, 2012. "A case study of condition based maintenance modelling based upon the oil analysis data of marine diesel engines using stochastic filtering," International Journal of Production Economics, Elsevier, vol. 136(1), pages 84-92.
    3. van Noortwijk, J.M. & van der Weide, J.A.M. & Kallen, M.J. & Pandey, M.D., 2007. "Gamma processes and peaks-over-threshold distributions for time-dependent reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1651-1658.
    4. Peng, Weiwen & Li, Yan-Feng & Mi, Jinhua & Yu, Le & Huang, Hong-Zhong, 2016. "Reliability of complex systems under dynamic conditions: A Bayesian multivariate degradation perspective," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 75-87.
    5. Graves, T.L. & Hamada, M.S. & Klamann, R.M. & Koehler, A.C. & Martz, H.F., 2008. "Using simultaneous higher-level and partial lower-level data in reliability assessments," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1273-1279.
    6. Fengjun Duan & Guanjun Wang, 2019. "Optimal design for constant-stress accelerated degradation test based on gamma process," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(9), pages 2229-2253, May.
    7. Yontay, Petek & Pan, Rong, 2016. "A computational Bayesian approach to dependency assessment in system reliability," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 104-114.
    8. Cai, Baoping & Liu, Yonghong & Fan, Qian & Zhang, Yunwei & Liu, Zengkai & Yu, Shilin & Ji, Renjie, 2014. "Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network," Applied Energy, Elsevier, vol. 114(C), pages 1-9.
    9. Nan Chen & Kwok Tsui, 2013. "Condition monitoring and remaining useful life prediction using degradation signals: revisited," IISE Transactions, Taylor & Francis Journals, vol. 45(9), pages 939-952.
    10. Zhi‐Sheng Ye & Min Xie, 2015. "Rejoinder to ‘Stochastic modelling and analysis of degradation for highly reliable products’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(1), pages 35-36, January.
    11. Li, Xiang-Yu & Huang, Hong-Zhong & Li, Yan-Feng, 2018. "Reliability analysis of phased mission system with non-exponential and partially repairable components," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 119-127.
    12. Peng, Weiwen & Li, Yan-Feng & Yang, Yuan-Jian & Huang, Hong-Zhong & Zuo, Ming J., 2014. "Inverse Gaussian process models for degradation analysis: A Bayesian perspective," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 175-189.
    13. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    14. Mi, Jinhua & Li, Yan-Feng & Peng, Weiwen & Huang, Hong-Zhong, 2018. "Reliability analysis of complex multi-state system with common cause failure based on evidential networks," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 71-81.
    15. Zhi‐Sheng Ye & Min Xie, 2015. "Stochastic modelling and analysis of degradation for highly reliable products," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(1), pages 16-32, January.
    16. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Lechang & Wang, Pidong & Wang, Qiang & Bi, Sifeng & Peng, Rui & Behrensdorf, Jasper & Beer, Michael, 2021. "Reliability analysis of a complex system with hybrid structures and multi-level dependent life metrics," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    2. Li, Xiang-Yu & Huang, Hong-Zhong & Li, Yan-Feng & Xiong, Xiaoyan, 2021. "A Markov regenerative process model for phased mission systems under internal degradation and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ling, M.H. & Ng, H.K.T. & Tsui, K.L., 2019. "Bayesian and likelihood inferences on remaining useful life in two-phase degradation models under gamma process," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 77-85.
    2. Gao, Hongda & Cui, Lirong & Dong, Qinglai, 2020. "Reliability modeling for a two-phase degradation system with a change point based on a Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Xudan Chen & Guoxun Ji & Xinli Sun & Zhen Li, 2019. "Inverse Gaussian–based model with measurement errors for degradation analysis," Journal of Risk and Reliability, , vol. 233(6), pages 1086-1098, December.
    4. Dong, Qinglai & Cui, Lirong, 2019. "A study on stochastic degradation process models under different types of failure Thresholds," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 202-212.
    5. Wang, Jun & Zhu, Xiaoyan, 2021. "Joint optimization of condition-based maintenance and inventory control for a k-out-of-n:F system of multi-state degrading components," European Journal of Operational Research, Elsevier, vol. 290(2), pages 514-529.
    6. Song, Kai & Shi, Jian & Yi, Xiaojian, 2020. "A time-discrete and zero-adjusted gamma process model with application to degradation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    7. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    8. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    9. Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Hao, Songhua & Yang, Jun & Berenguer, Christophe, 2019. "Degradation analysis based on an extended inverse Gaussian process model with skew-normal random effects and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 261-270.
    11. Wang, Lizhi & Pan, Rong & Wang, Xiaohong & Fan, Wenhui & Xuan, Jinquan, 2017. "A Bayesian reliability evaluation method with different types of data from multiple sources," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 128-135.
    12. Yingchun Xu & Xiaohu Zheng & Wen Yao & Ning Wang & Xiaoqian Chen, 2021. "A sequential multi-prior integration and updating method for complex multi-level system based on Bayesian melding method," Journal of Risk and Reliability, , vol. 235(5), pages 863-876, October.
    13. Liu, Bin & Zhao, Xiujie & Liu, Guoquan & Liu, Yiqi, 2020. "Life cycle cost analysis considering multiple dependent degradation processes and environmental influence," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    14. Song, Kai & Cui, Lirong, 2022. "A common random effect induced bivariate gamma degradation process with application to remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    15. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    16. Truong-Ba, Huy & Cholette, Michael E. & Rebello, Sinda & Kent, Geoff, 2024. "Joint planning of inspection, replacement, and component decommissioning for a series system with non-identically degrading components," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    17. Pedersen, Tom Ivar & Vatn, Jørn, 2022. "Optimizing a condition-based maintenance policy by taking the preferences of a risk-averse decision maker into account," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    18. Fang, Guanqi & Pan, Rong & Hong, Yili, 2020. "Copula-based reliability analysis of degrading systems with dependent failures," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    19. Hu, Jiawen & Chen, Piao, 2020. "Predictive maintenance of systems subject to hard failure based on proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    20. Weichao Yu & Xianbin Zheng & Weihe Huang & Qingwen Cai & Jie Guo & Jili Xu & Yang Liu & Jing Gong & Hong Yang, 2022. "A Data-Driven Methodology for the Reliability Analysis of the Natural Gas Compressor Unit Considering Multiple Failure Modes," Energies, MDPI, vol. 15(10), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:233:y:2019:i:4:p:615-622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.