IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v175y2018icp119-127.html
   My bibliography  Save this article

Reliability analysis of phased mission system with non-exponential and partially repairable components

Author

Listed:
  • Li, Xiang-Yu
  • Huang, Hong-Zhong
  • Li, Yan-Feng

Abstract

Phased mission systems (PMSs) have wide applications in engineering practices, especially in aerospace industry such as man-made satellite and spacecraft. To achieve high reliability in a PMS, certain critical parts in the system are designed to have a redundant architecture, such as cold standby (structural or functional). State-space models such as Markov processes have been widely used in previous studies to evaluate the reliabilities of these systems. But in practice, many real systems consist of mechanical components or mechatronics whose lifetime follow non-exponential distributions like the Weibull distribution. In this type of system, the Markov process is not capable of modeling the system behavior. In this paper, the SMP (Semi-Markov Process) is applied to solve the problem that the components’ lifetime in dynamic systems follows non-exponential distributions. An approximation algorithm for the SMP is proposed to assess the reliability of the PMSs consisting of non-exponential components. Furthermore, the accuracy and calculation efficiency of the approximation algorithm are explored. At last, the reliability assessment of a complex multi-phased altitude and orbit control system (AOCS) in a man-made satellite is presented to illustrate the method.

Suggested Citation

  • Li, Xiang-Yu & Huang, Hong-Zhong & Li, Yan-Feng, 2018. "Reliability analysis of phased mission system with non-exponential and partially repairable components," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 119-127.
  • Handle: RePEc:eee:reensy:v:175:y:2018:i:c:p:119-127
    DOI: 10.1016/j.ress.2018.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016307098
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Chaonan & Xing, Liudong & Peng, Rui & Pan, Zhusheng, 2017. "Competing failure analysis in phased-mission systems with multiple functional dependence groups," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 24-33.
    2. A Shrestha & L Xing, 2008. "Improved modular reliability analyses of hybrid phased mission systems," Journal of Risk and Reliability, , vol. 222(4), pages 507-520, December.
    3. Xing, Liudong & Meshkat, Leila & Donohue, Susan K., 2007. "Reliability analysis of hierarchical computer-based systems subject to common-cause failures," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 351-359.
    4. Jiang, Tao & Liu, Yu, 2017. "Parameter inference for non-repairable multi-state system reliability models by multi-level observation sequences," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 3-15.
    5. Mi, Jinhua & Li, Yan-Feng & Peng, Weiwen & Huang, Hong-Zhong, 2018. "Reliability analysis of complex multi-state system with common cause failure based on evidential networks," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 71-81.
    6. Yan-Feng Li & Jinhua Mi & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Dynamic fault tree analysis based on continuous-time Bayesian networks under fuzzy numbers," Journal of Risk and Reliability, , vol. 229(6), pages 530-541, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiang-Yu & Xiong, Xiaoyan & Guo, Junyu & Huang, Hong-Zhong & Li, Xiaopeng, 2022. "Reliability assessment of non-repairable multi-state phased mission systems with backup missions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. Tang, Maochun & Xiahou, Tangfan & Liu, Yu, 2023. "Mission performance analysis of phased-mission systems with cross-phase competing failures," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    4. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Li, Xiang-Yu & Li, Yan-Feng & Huang, Hong-Zhong & Zio, Enrico, 2018. "Reliability assessment of phased-mission systems under random shocks," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 352-361.
    6. Jie Zhou & Hong-Zhong Huang & Yan-Feng Li & Junyu Guo, 2022. "A framework for fatigue reliability analysis of high-pressure turbine blades," Annals of Operations Research, Springer, vol. 311(1), pages 489-505, April.
    7. Zhang, Xiaoqiang & Gao, Huiying & Huang, Hong-Zhong & Li, Yan-Feng & Mi, Jinhua, 2018. "Dynamic reliability modeling for system analysis under complex load," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 345-351.
    8. Huang, Tudi & Xiahou, Tangfan & Mi, Jinhua & Chen, Hong & Huang, Hong-Zhong & Liu, Yu, 2024. "Merging multi-level evidential observations for dynamic reliability assessment of hierarchical multi-state systems: A dynamic Bayesian network approach," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    9. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2017. "Redundancy optimization for series-parallel phased mission systems exposed to random shocks," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 554-560.
    10. Huang, Xianzhen & Aslett, Louis J.M. & Coolen, Frank P.A., 2019. "Reliability analysis of general phased mission systems with a new survival signature," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 416-422.
    11. Louzada, Francisco & Tomazella, Vera L.D. & Gonzatto, Oilson A. & Bochio, Gustavo & Milani, Eder A. & Ferreira, Paulo H. & Ramos, Pedro L., 2022. "Reliability assessment of repairable systems with series–parallel structure subjected to hierarchical competing risks under minimal repair regime," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    12. Zheng Liu & Xin Liu & Hong-Zhong Huang & Pingyu Zhu & Zhongwei Liang, 2022. "A new inherent reliability modeling and analysis method based on imprecise Dirichlet model for machine tool spindle," Annals of Operations Research, Springer, vol. 311(1), pages 295-310, April.
    13. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort policy optimization for series systems with overlapping primary and rescue subsystems operating in a random environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. Ying-Kui Gu & Chao-Jun Fan & Ling-Qiang Liang & Jun Zhang, 2022. "Reliability calculation method based on the Copula function for mechanical systems with dependent failure," Annals of Operations Research, Springer, vol. 311(1), pages 99-116, April.
    15. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    16. Junyuan Wang & Jimin Ye & Qianru Ma & Pengfei Xie, 2022. "An extended geometric process repairable model with its repairman having vacation," Annals of Operations Research, Springer, vol. 311(1), pages 401-415, April.
    17. Wang, Rongxi & Li, Yufan & Xu, Jinjin & Wang, Zhen & Gao, Jianmin, 2022. "F2G: A hybrid fault-function graphical model for reliability analysis of complex equipment with coupled faults," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    18. Yan-Feng Li & Hong-Zhong Huang & Jinhua Mi & Weiwen Peng & Xiaomeng Han, 2022. "Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability," Annals of Operations Research, Springer, vol. 311(1), pages 195-209, April.
    19. Levitin, Gregory & Finkelstein, Maxim, 2018. "Optimal mission abort policy for systems in a random environment with variable shock rate," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 11-17.
    20. Yuan-Jian Yang & Ya-Lan Xiong & Xin-Yin Zhang & Gui-Hua Wang & Bihai Zou, 2022. "Reliability analysis of continuous emission monitoring system with common cause failure based on fuzzy FMECA and Bayesian networks," Annals of Operations Research, Springer, vol. 311(1), pages 451-467, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:175:y:2018:i:c:p:119-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.