IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v234y2023ics0951832023000893.html
   My bibliography  Save this article

Mission performance analysis of phased-mission systems with cross-phase competing failures

Author

Listed:
  • Tang, Maochun
  • Xiahou, Tangfan
  • Liu, Yu

Abstract

Phased-mission systems (PMSs) with sophisticated failure modes could behave diverse mission performance levels. The non-negligible competing failures, resulting from complicated components’ failure patterns, have posed a great challenge for the mission performance analysis of PMSs. Even though many methods have been developed to facilitate reliability assessment of PMSs with competing failures in the past few decades, the mission performance analysis of PMSs with competing failures, varying from phase to phase, is still in difficulty. This feature is defined as the cross-phase competing failure, characterized by a two-by-two crossover combination of three or more failure modes in distinct mission phases. In this study, mission performance analysis of PMSs with cross-phase competing failures is conducted. By the divide-and-conquer strategy, the conditional probability of paths, resulting from the phase-dependent effects of components, is computed via an iterative method. Based on the phase equivalent binary decision diagrams, the mission performance analysis of PMSs with cross-phase competing failures is conducted. The probability distribution of mission performance levels, together with the system reliability, is assessed phase-by-phase based on the lifetime distributions of components and mission durations. A distributed multi-sensor multi-target tracking system, along with a set of comparative studies, is given to demonstrate the effectiveness and applicability of the proposed method. The results show that the proposed approach to mission performance analysis of PMSs is more computationally efficient than the existing combinational models.

Suggested Citation

  • Tang, Maochun & Xiahou, Tangfan & Liu, Yu, 2023. "Mission performance analysis of phased-mission systems with cross-phase competing failures," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:reensy:v:234:y:2023:i:c:s0951832023000893
    DOI: 10.1016/j.ress.2023.109174
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023000893
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Chaonan & Xing, Liudong & Peng, Rui & Pan, Zhusheng, 2017. "Competing failure analysis in phased-mission systems with multiple functional dependence groups," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 24-33.
    2. Peican Zhu & Yangming Guo & Shubin Si & Jie Han, 2017. "A stochastic analysis of competing failures with propagation effects in functional dependency gates," IISE Transactions, Taylor & Francis Journals, vol. 49(11), pages 1050-1064, November.
    3. Zhao, Guilin & Xing, Liudong, 2021. "Reliability analysis of body sensor networks subject to random isolation time," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Chen, Ying & Li, YingYi & Kang, Rui & Ali, Mosleh, 2020. "Reliability analysis of PMS with failure mechanism accumulation rules and a hierarchical method," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    5. Li, Xiang-Yu & Huang, Hong-Zhong & Li, Yan-Feng, 2018. "Reliability analysis of phased mission system with non-exponential and partially repairable components," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 119-127.
    6. Levitin, Gregory & Xing, Liudong, 2010. "Reliability and performance of multi-state systems with propagated failures having selective effect," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 655-661.
    7. Zhang, Xi & Liu, Dong & Tu, Haicheng & Tse, Chi Kong, 2022. "An integrated modeling framework for cascading failure study and robustness assessment of cyber-coupled power grids," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    8. Huang, Xianzhen & Aslett, Louis J.M. & Coolen, Frank P.A., 2019. "Reliability analysis of general phased mission systems with a new survival signature," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 416-422.
    9. Wang, Yujie & Xing, Liudong & Levitin, Gregory & Huang, Ning, 2018. "Probabilistic competing failure analysis in phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 37-51.
    10. Starling, James K. & Mastrangelo, Christina & Choe, Youngjun, 2021. "Improving Weibull distribution estimation for generalized Type I censored data using modified SMOTE," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    11. Jiang, Tao & Liu, Yu, 2017. "Parameter inference for non-repairable multi-state system reliability models by multi-level observation sequences," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 3-15.
    12. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2012. "Competing failure analysis in phased-mission systems with functional dependence in one of phases," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 90-99.
    13. Ye, Zhenggeng & Yang, Hui & Cai, Zhiqiang & Si, Shubin & Zhou, Fuli, 2021. "Performance evaluation of serial-parallel manufacturing systems based on the impact of heterogeneous feedstocks on machine degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    14. Xing, Liudong & Levitin, Gregory, 2010. "Combinatorial analysis of systems with competing failures subject to failure isolation and propagation effects," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1210-1215.
    15. Zhao, Guilin & Xing, Liudong, 2020. "Reliability analysis of IoT systems with competitions from cascading probabilistic function dependence," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chaonan & Xing, Liudong & Yu, Jingui & Guan, Quanlong & Yang, Chunhui & Yu, Min, 2023. "Phase reduction for efficient reliability analysis of dynamic k-out-of-n phased mission systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Wang, Xiaolin & Xu, Jihui & Zhang, Lei & Wang, Ning, 2023. "Mission success probability optimizing of phased mission system balancing the phase backup and system risk: A novel GERT mechanism," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chaonan & Liu, Qiongyang & Xing, Liudong & Guan, Quanlong & Yang, Chunhui & Yu, Min, 2022. "Reliability analysis of smart home sensor systems subject to competing failures," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Zhao, Guilin & Xing, Liudong, 2023. "Reliability analysis of body sensor networks with correlated isolation groups," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    3. Zhao, Guilin & Xing, Liudong, 2020. "Reliability analysis of IoT systems with competitions from cascading probabilistic function dependence," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    4. Wang, Yujie & Xing, Liudong & Levitin, Gregory & Huang, Ning, 2018. "Probabilistic competing failure analysis in phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 37-51.
    5. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Che, Haiyang, 2021. "A Bayesian network for reliability assessment of man-machine phased-mission system considering the phase dependencies of human cognitive error," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    6. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2013. "Reliability analysis of multi-trigger binary systems subject to competing failures," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 9-17.
    7. Fang, Jiayue & Kang, Rui & Chen, Ying, 2021. "Reliability evaluation of non-repairable systems with failure mechanism trigger effect," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    8. Wang, Chaonan & Xing, Liudong & Peng, Rui & Pan, Zhusheng, 2017. "Competing failure analysis in phased-mission systems with multiple functional dependence groups," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 24-33.
    9. Dui, Hongyan & Meng, Xueyu & Xiao, Hui & Guo, Jianjun, 2020. "Analysis of the cascading failure for scale-free networks based on a multi-strategy evolutionary game," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    10. Zhao, Guilin & Xing, Liudong, 2021. "Reliability analysis of body sensor networks subject to random isolation time," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    11. Li, Xiang-Yu & Xiong, Xiaoyan & Guo, Junyu & Huang, Hong-Zhong & Li, Xiaopeng, 2022. "Reliability assessment of non-repairable multi-state phased mission systems with backup missions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    12. Yu, Haiyue & Wu, Xinyang & Wu, Xiaoyue, 2020. "An extended object-oriented petri net model for mission reliability evaluation of phased-mission system with time redundancy," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    13. Wang, Chaonan & Xing, Liudong & Amari, Suprasad V. & Tang, Bo, 2020. "Efficient reliability analysis of dynamic k-out-of-n heterogeneous phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. Chen, Ying & Yang, Liu & Ye, Cui & Kang, Rui, 2015. "Failure mechanism dependence and reliability evaluation of non-repairable system," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 273-283.
    15. Wang, Yujie & Xing, Liudong & Wang, Honggang & Levitin, Gregory, 2015. "Combinatorial analysis of body sensor networks subject to probabilistic competing failures," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 388-398.
    16. Wang, Chaonan & Xing, Liudong & Yu, Jingui & Guan, Quanlong & Yang, Chunhui & Yu, Min, 2023. "Phase reduction for efficient reliability analysis of dynamic k-out-of-n phased mission systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    17. Liu, Yu & Liu, Qinzhen & Xie, Chaoyang & Wei, Fayuan, 2019. "Reliability assessment for multi-state systems with state transition dependency," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 276-288.
    18. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    19. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    20. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:234:y:2023:i:c:s0951832023000893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.