IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v95y2010i11p1210-1215.html
   My bibliography  Save this article

Combinatorial analysis of systems with competing failures subject to failure isolation and propagation effects

Author

Listed:
  • Xing, Liudong
  • Levitin, Gregory

Abstract

This paper considers the reliability analysis of binary-state systems, subject to propagated failures with global effect, and failure isolation phenomena. Propagated failures with global effect are common-cause failures originated from a component of a system/subsystem causing the failure of the entire system/subsystem. Failure isolation occurs when the failure of one component (referred to as a trigger component) causes other components (referred to as dependent components) within the same system to become isolated from the system. On the one hand, failure isolation makes the isolated dependent components unusable; on the other hand, it prevents the propagation of failures originated from those dependent components. However, the failure isolation effect does not exist if failures originated in the dependent components already propagate globally before the trigger component fails. In other words, there exists a competition in the time domain between the failure of the trigger component that causes failure isolation and propagated failures originated from the dependent components. This paper presents a combinatorial method for the reliability analysis of systems subject to such competing propagated failures and failure isolation effect. Based on the total probability theorem, the proposed method is analytical, exact, and has no limitation on the type of time-to-failure distributions for the system components. An illustrative example is given to demonstrate the basics and advantages of the proposed method.

Suggested Citation

  • Xing, Liudong & Levitin, Gregory, 2010. "Combinatorial analysis of systems with competing failures subject to failure isolation and propagation effects," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1210-1215.
  • Handle: RePEc:eee:reensy:v:95:y:2010:i:11:p:1210-1215
    DOI: 10.1016/j.ress.2010.06.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832010001481
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2010.06.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Levitin, Gregory & Xing, Liudong, 2010. "Reliability and performance of multi-state systems with propagated failures having selective effect," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 655-661.
    2. Levitin, Gregory & Amari, Suprasad V., 2008. "Multi-state systems with multi-fault coverage," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1730-1739.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jafary, Bentolhoda & Fiondella, Lance, 2016. "A universal generating function-based multi-state system performance model subject to correlated failures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 16-27.
    2. Levitin, Gregory & Xing, Liudong & Ben-Haim, Hanoch & Dai, Yuanshun, 2011. "Multi-state systems with selective propagated failures and imperfect individual and group protections," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1657-1666.
    3. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2012. "Competing failure analysis in phased-mission systems with functional dependence in one of phases," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 90-99.
    4. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2012. "Propagated failure analysis for non-repairable systems considering both global and selective effects," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 96-104.
    5. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2013. "Reliability analysis of multi-trigger binary systems subject to competing failures," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 9-17.
    6. Park, Jae-Hyun, 2017. "Time-dependent reliability of wireless networks with dependent failures," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 47-61.
    7. Tang, Maochun & Xiahou, Tangfan & Liu, Yu, 2023. "Mission performance analysis of phased-mission systems with cross-phase competing failures," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. Fang, Jiayue & Kang, Rui & Chen, Ying, 2021. "Reliability evaluation of non-repairable systems with failure mechanism trigger effect," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    9. Peng, Rui & Mo, Huadong & Xie, Min & Levitin, Gregory, 2013. "Optimal structure of multi-state systems with multi-fault coverage," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 18-25.
    10. Levitin, Gregory & Xing, Liudong & Huang, Hong Zhong, 2019. "Dynamic availability and performance deficiency of common bus systems with imperfectly repairable components," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 58-66.
    11. Wang, Chaonan & Xing, Liudong & Peng, Rui & Pan, Zhusheng, 2017. "Competing failure analysis in phased-mission systems with multiple functional dependence groups," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 24-33.
    12. Yeh, Wei-Chang, 2017. "Evaluation of the one-to-all-target-subsets reliability of a novel deterioration-effect acyclic multi-state information network," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 132-137.
    13. Abou, Seraphin C., 2010. "Performance assessment of multi-state systems with critical failure modes: Application to the flotation metallic arsenic circuit," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 614-622.
    14. Maaroufi, Ghofrane & Chelbi, Anis & Rezg, Nidhal, 2013. "Optimal selective renewal policy for systems subject to propagated failures with global effect and failure isolation phenomena," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 61-70.
    15. Dui, Hongyan & Meng, Xueyu & Xiao, Hui & Guo, Jianjun, 2020. "Analysis of the cascading failure for scale-free networks based on a multi-strategy evolutionary game," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    16. Fiondella, Lance & Xing, Liudong, 2015. "Discrete and continuous reliability models for systems with identically distributed correlated components," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 1-10.
    17. Piriou, Pierre-Yves & Faure, Jean-Marc & Lesage, Jean-Jacques, 2017. "Generalized Boolean logic Driven Markov Processes: A powerful modeling framework for Model-Based Safety Analysis of dynamic repairable and reconfigurable systems," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 57-68.
    18. Bistouni, Fathollah & Jahanshahi, Mohsen, 2014. "Analyzing the reliability of shuffle-exchange networks using reliability block diagrams," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 97-106.
    19. Li, Ruopu & Arzaghi, Ehsan & Abbassi, Rouzbeh & Chen, Diyi & Li, Chunhao & Li, Huanhuan & Xu, Beibei, 2020. "Dynamic maintenance planning of a hydro-turbine in operational life cycle," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    20. Coit, David W. & Zio, Enrico, 2019. "The evolution of system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:95:y:2010:i:11:p:1210-1215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.