IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v183y2019icp29-38.html
   My bibliography  Save this article

Influence of failure propagation on mission abort policy in heterogeneous warm standby systems

Author

Listed:
  • Levitin, Gregory
  • Xing, Liudong
  • Luo, Liang

Abstract

In many life-critical applications (e.g., spacecraft, aircrafts and chemical reactors), accomplishing a specified mission or aborting mission objectives in the case of certain condition being met to survive the system are both crucial. While conventional reliability models have typically focused only on evaluating the mission success probability, few of recent research addressed effects of mission aborts and studied system survivability. However, these works fail to consider propagated failures that can make significant contributions to the mission failure and may affect the optimal mission abort policy adopted for the system. In this paper, we suggest a numerical method for addressing effects of failure propagations in analyzing the mission success probability (MSP) and system survivability (SS) of 1-out-of-N warm standby systems subject to mission abort. The system may be heterogeneous, composed of components with different standby modes, and different performance and failure time distribution parameters. Both the activation sequence of those heterogeneous components and the adopted mission abort policy can affect the system performance metrics greatly. Therefore, we make further contributions by formulating and solving optimization problems that find the optimal mission abort policy for systems with any given component activation sequence or the optimal combination of mission abort policy and component activation sequence, maximizing the MSP while satisfying a desired SS level. Examples are provided to demonstrate influence of propagated failures on system performance and optimization solutions. Examples also show that the optimal abort policy determined can achieve a good balance between MSP and SS taking into account failure propagation.

Suggested Citation

  • Levitin, Gregory & Xing, Liudong & Luo, Liang, 2019. "Influence of failure propagation on mission abort policy in heterogeneous warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 29-38.
  • Handle: RePEc:eee:reensy:v:183:y:2019:i:c:p:29-38
    DOI: 10.1016/j.ress.2018.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018309517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.11.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2018. "Optimal mission abort policy for partially repairable heterogeneous systems," European Journal of Operational Research, Elsevier, vol. 271(3), pages 818-825.
    2. Myers, Albert F. & Rauzy, Antoine, 2008. "Assessment of redundant systems with imperfect coverage by means of binary decision diagrams," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 1025-1035.
    3. Levitin, Gregory & Xing, Liudong, 2010. "Reliability and performance of multi-state systems with propagated failures having selective effect," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 655-661.
    4. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2012. "Propagated failure analysis for non-repairable systems considering both global and selective effects," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 96-104.
    5. Levitin, Gregory & Xing, Liudong & Amari, Suprasad V. & Dai, Yuanshun, 2013. "Reliability of non-repairable phased-mission systems with propagated failures," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 218-228.
    6. Peng, Rui, 2018. "Joint routing and aborting optimization of cooperative unmanned aerial vehicles," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 131-137.
    7. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal mission abort policy with multiple shock number thresholds," Journal of Risk and Reliability, , vol. 232(6), pages 607-615, December.
    8. Alizadeh, Siamak & Sriramula, Srinivas, 2018. "Impact of common cause failure on reliability performance of redundant safety related systems subject to process demand," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 129-150.
    9. Levitin, Gregory & Xing, Liudong & Ben-Haim, Hanoch & Dai, Yuanshun, 2011. "Multi-state systems with selective propagated failures and imperfect individual and group protections," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1657-1666.
    10. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2013. "Cold-standby sequencing optimization considering mission cost," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 28-34.
    11. Wang, Yujie & Xing, Liudong & Levitin, Gregory & Huang, Ning, 2018. "Probabilistic competing failure analysis in phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 37-51.
    12. Peng, Rui & Zhai, Qingqing & Xing, Liudong & Yang, Jun, 2014. "Reliability of demand-based phased-mission systems subject to fault level coverage," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 18-25.
    13. Levitin, Gregory & Finkelstein, Maxim, 2018. "Optimal mission abort policy for systems in a random environment with variable shock rate," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 11-17.
    14. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal Mission Abort Policy for Systems Operating in a Random Environment," Risk Analysis, John Wiley & Sons, vol. 38(4), pages 795-803, April.
    15. Wang, Yujie & Xing, Liudong & Wang, Honggang & Levitin, Gregory, 2015. "Combinatorial analysis of body sensor networks subject to probabilistic competing failures," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 388-398.
    16. Zhang, Tieling & Xie, Min & Horigome, Michio, 2006. "Availability and reliability of k-out-of-(M+N):G warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 91(4), pages 381-387.
    17. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Co-optimization of state dependent loading and mission abort policy in heterogeneous warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 151-158.
    18. Papageorgiou, Effie & Kokolakis, George, 2010. "Reliability analysis of a two-unit general parallel system with (n-2) warm standbys," European Journal of Operational Research, Elsevier, vol. 201(3), pages 821-827, March.
    19. Xing, Liudong & Amari, Suprasad V. & Wang, Chaonan, 2012. "Reliability of k-out-of-n systems with phased-mission requirements and imperfect fault coverage," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 45-50.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yujie & Xing, Liudong & Levitin, Gregory & Huang, Ning, 2018. "Probabilistic competing failure analysis in phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 37-51.
    2. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "Mission abort policy optimization for series systems with overlapping primary and rescue subsystems operating in a random environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Qiu, Qingan & Cui, Lirong, 2019. "Gamma process based optimal mission abort policy," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    4. Qiu, Qingan & Cui, Lirong, 2019. "Optimal mission abort policy for systems subject to random shocks based on virtual age process," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 11-20.
    5. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal aborting rule in multi-attempt missions performed by multicomponent systems," European Journal of Operational Research, Elsevier, vol. 283(1), pages 244-252.
    6. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal abort rules and subtask distribution in missions performed by multiple independent heterogeneous units," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    7. Ke Chen & Xian Zhao & Qingan Qiu, 2022. "Optimal Task Abort and Maintenance Policies Considering Time Redundancy," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
    8. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal mission aborting in multistate systems with storage," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    9. Zhao, Xian & Dai, Ying & Qiu, Qingan & Wu, Yaguang, 2022. "Joint optimization of mission aborts and allocation of standby components considering mission loss," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Gregory Levitin & Liudong Xing & Yuanshun Dai, 2020. "Mission Abort Policy for Systems with Observable States of Standby Components," Risk Analysis, John Wiley & Sons, vol. 40(10), pages 1900-1912, October.
    11. Zhao, Xian & Fan, Yu & Qiu, Qingan & Chen, Ke, 2021. "Multi-criteria mission abort policy for systems subject to two-stage degradation process," European Journal of Operational Research, Elsevier, vol. 295(1), pages 233-245.
    12. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2021. "Dynamic task distribution balancing primary mission work and damage reduction work in parallel systems exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    13. Zhao, Xian & Chai, Xiaofei & Sun, Jinglei & Qiu, Qingan, 2021. "Joint optimization of mission abort and component switching policies for multistate warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    14. Zhao, Xian & Chai, Xiaofei & Sun, Jinglei & Qiu, Qingan, 2021. "Optimal bivariate mission abort policy for systems operate in random shock environment," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    15. Gregory Levitin & Maxim Finkelstein & Hong‐Zhong Huang, 2019. "Optimal Abort Rules for Multiattempt Missions," Risk Analysis, John Wiley & Sons, vol. 39(12), pages 2732-2743, December.
    16. Qiu, Qingan & Kou, Meng & Chen, Ke & Deng, Qiao & Kang, Fengming & Lin, Cong, 2021. "Optimal stopping problems for mission oriented systems considering time redundancy," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    17. Zhu, Xiaoning & Zhu, Xiaoping & Yan, Rui & Peng, Rui, 2021. "Optimal routing, aborting and hitting strategies of UAVs executing hitting the targets considering the defense range of targets," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    18. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal mission abort policies for repairable multistate systems performing multi-attempt mission," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    19. Liu, Lujie & Yang, Jun, 2023. "A dynamic mission abort policy for the swarm executing missions and its solution method by tailored deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    20. Levitin, Gregory & Xing, Liudong & Haim, Hanoch Ben & Dai, Yuanshun, 2019. "Optimal structure of series system with 1-out-of-n warm standby subsystems performing operation and rescue functions," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 523-531.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:183:y:2019:i:c:p:29-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.