IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v166y2017icp3-15.html
   My bibliography  Save this article

Parameter inference for non-repairable multi-state system reliability models by multi-level observation sequences

Author

Listed:
  • Jiang, Tao
  • Liu, Yu

Abstract

Multi-state system reliability theory has received considerable attention in recent years, as it is able to characterize the multi-state nature and complicated deterioration process of systems in a finer fashion than that of binary-state system models. Parameter inference for multi-state system reliability models, which is a task that precedes reliability evaluation and optimization, is an interesting topic to be investigated. In this paper, a new parameter inference method, which aggregates observation sequences from multiple levels of a system, is developed. The proposed inference method generally consists of two stages: (1) compute the sequences of the posterior state probability distributions of units based on multi-level observation sequences by dynamic Bayesian network models and (2) estimate the unknown transition probabilities of units by converting the sequences of posterior state probability distributions into a least squares problem. Two illustrative examples, together with a set of comparative studies, are presented to demonstrate the effectiveness and efficiency of the proposed method.

Suggested Citation

  • Jiang, Tao & Liu, Yu, 2017. "Parameter inference for non-repairable multi-state system reliability models by multi-level observation sequences," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 3-15.
  • Handle: RePEc:eee:reensy:v:166:y:2017:i:c:p:3-15
    DOI: 10.1016/j.ress.2016.11.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016308754
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.11.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brahim Ouhbi & Nikolaos Limnios, 1999. "Nonparametric Estimation for Semi-Markov Processes Based on its Hazard Rate Functions," Statistical Inference for Stochastic Processes, Springer, vol. 2(2), pages 151-173, May.
    2. Lisnianski, Anatoly & Elmakias, David & Laredo, David & Ben Haim, Hanoch, 2012. "A multi-state Markov model for a short-term reliability analysis of a power generating unit," Reliability Engineering and System Safety, Elsevier, vol. 98(1), pages 1-6.
    3. Lisnianski, Anatoly, 2007. "Extended block diagram method for a multi-state system reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1601-1607.
    4. A. Karagrigoriou & A. Makrides & T. Tsapanos & G. Vougiouka, 2016. "Earthquake Forecasting Based on Multi-State System Methodology," Methodology and Computing in Applied Probability, Springer, vol. 18(2), pages 547-561, June.
    5. Graves, T.L. & Hamada, M.S. & Klamann, R. & Koehler, A. & Martz, H.F., 2007. "A fully Bayesian approach for combining multi-level information in multi-state fault tree quantification," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1476-1483.
    6. Gregory Levitin, 2005. "The Universal Generating Function in Reliability Analysis and Optimization," Springer Series in Reliability Engineering, Springer, number 978-1-84628-245-4, January.
    7. Li, Mingyang & Liu, Jian & Li, Jing & Uk Kim, Byoung, 2014. "Bayesian modeling of multi-state hierarchical systems with multi-level information aggregation," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 158-164.
    8. Francis, Royce A. & Guikema, Seth D. & Henneman, Lucas, 2014. "Bayesian Belief Networks for predicting drinking water distribution system pipe breaks," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 1-11.
    9. Jackson, Chris & Mosleh, Ali, 2016. "Bayesian inference with overlapping data: Reliability estimation of multi-state on-demand continuous life metric systems with uncertain evidence," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 124-135.
    10. Levitin, Gregory & Dai, Yuan-Shun, 2007. "Service reliability and performance in grid system with star topology," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 40-46.
    11. C Jackson & A Mosleh, 2012. "Downwards inference: Bayesian analysis of overlapping higher-level data sets of complex binary-state on-demand systems," Journal of Risk and Reliability, , vol. 226(2), pages 182-193, April.
    12. Jackson, Chris & Mosleh, Ali, 2012. "Bayesian inference with overlapping data for systems with continuous life metrics," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 217-231.
    13. Moghaddass, Ramin & Zuo, Ming J., 2012. "A parameter estimation method for a condition-monitored device under multi-state deterioration," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 94-103.
    14. Li, Wei & Zuo, Ming J., 2008. "Reliability evaluation of multi-state weighted k-out-of-n systems," Reliability Engineering and System Safety, Elsevier, vol. 93(1), pages 160-167.
    15. Masoud Pourali & Ali Mosleh, 2013. "A Bayesian approach to sensor placement optimization and system reliability monitoring," Journal of Risk and Reliability, , vol. 227(3), pages 327-347, June.
    16. Daniele Codetta-Raiteri & Luigi Portinale, 2014. "Approaching dynamic reliability with predictive and diagnostic purposes by exploiting dynamic Bayesian networks," Journal of Risk and Reliability, , vol. 228(5), pages 488-503, October.
    17. C Jacksonn & A Mosleh, 2012. "Bayesian inference with overlapping data: methodology for reliability estimation of multi-state on-demand systems," Journal of Risk and Reliability, , vol. 226(3), pages 283-294, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiang-Yu & Xiong, Xiaoyan & Guo, Junyu & Huang, Hong-Zhong & Li, Xiaopeng, 2022. "Reliability assessment of non-repairable multi-state phased mission systems with backup missions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    2. Louzada, Francisco & Tomazella, Vera L.D. & Gonzatto, Oilson A. & Bochio, Gustavo & Milani, Eder A. & Ferreira, Paulo H. & Ramos, Pedro L., 2022. "Reliability assessment of repairable systems with series–parallel structure subjected to hierarchical competing risks under minimal repair regime," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    3. Yanbo Song & Xiaoyue Wang, 2022. "Reliability Analysis of the Multi-State k -out-of- n : F Systems with Multiple Operation Mechanisms," Mathematics, MDPI, vol. 10(23), pages 1-16, December.
    4. Tang, Maochun & Xiahou, Tangfan & Liu, Yu, 2023. "Mission performance analysis of phased-mission systems with cross-phase competing failures," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Peng Lin & Leidi Shen & Zhiheng Zhao & George Q. Huang, 2019. "Graduation manufacturing system: synchronization with IoT-enabled smart tickets," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2885-2900, December.
    6. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    7. Peng, Rui & He, Xiaofeng & Zhong, Chao & Kou, Gang & Xiao, Hui, 2022. "Preventive maintenance for heterogeneous parallel systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    8. Zhang, Aibo & Wu, Shengnan & Fan, Dongming & Xie, Min & Cai, Baoping & Liu, Yiliu, 2022. "Adaptive testing policy for multi-state systems with application to the degrading final elements in safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    9. Jiang, Tao & Liu, Yu, 2020. "Selective maintenance strategy for systems executing multiple consecutive missions with uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    10. Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    11. Jie Zhou & Hong-Zhong Huang & Yan-Feng Li & Junyu Guo, 2022. "A framework for fatigue reliability analysis of high-pressure turbine blades," Annals of Operations Research, Springer, vol. 311(1), pages 489-505, April.
    12. Zhao, Yunfei & Gao, Wei & Smidts, Carol, 2021. "Sequential Bayesian inference of transition rates in the hidden Markov model for multi-state system degradation," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    13. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Wenbin Cao & Xisheng Jia & Yu Liu & Qiwei Hu & Jianmin Zhao, 2019. "Selective maintenance optimisation considering random common cause failures and imperfect maintenance," Journal of Risk and Reliability, , vol. 233(3), pages 427-443, June.
    15. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    16. Li, Xiang-Yu & Huang, Hong-Zhong & Li, Yan-Feng & Xiong, Xiaoyan, 2021. "A Markov regenerative process model for phased mission systems under internal degradation and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    17. Li, Xiang-Yu & Huang, Hong-Zhong & Li, Yan-Feng, 2018. "Reliability analysis of phased mission system with non-exponential and partially repairable components," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 119-127.
    18. Zhao, Xian & Li, Ziyue & Wang, Xiaoyue & Guo, Bin, 2023. "Reliability of performance-based system containing multiple load-sharing subsystems with protective devices considering protection randomness," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    19. Zhou, Kai-Li & Cheng, De-Jun & Zhang, Han-Bing & Hu, Zhong-tai & Zhang, Chun-Yan, 2023. "Deep learning-based intelligent multilevel predictive maintenance framework considering comprehensive cost," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    20. Zheng, Yi-Xuan & Xiahou, Tangfan & Liu, Yu & Xie, Chaoyang, 2021. "Structure function learning of hierarchical multi-state systems with incomplete observation sequences," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    21. Zhao, Xian & Qi, Xin & Wang, Xiaoyue, 2023. "Reliability assessment for coherent systems operating under a generalized mixed shock model with multiple change points of the environment," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    22. Shen, Jingyuan & Hu, Jiawen & Ma, Yizhong, 2020. "Two preventive replacement strategies for systems with protective auxiliary parts subject to degradation and economic dependence," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    23. Khaled Guerraiche & Latifa Dekhici & Eric Chatelet & Abdelkader Zeblah, 2021. "Multi-Objective Electrical Power System Design Optimization Using a Modified Bat Algorithm," Energies, MDPI, vol. 14(13), pages 1-19, July.
    24. Liu, Yu & Liu, Qinzhen & Xie, Chaoyang & Wei, Fayuan, 2019. "Reliability assessment for multi-state systems with state transition dependency," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 276-288.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jackson, Chris & Mosleh, Ali, 2016. "Bayesian inference with overlapping data: Reliability estimation of multi-state on-demand continuous life metric systems with uncertain evidence," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 124-135.
    2. Yang, Lechang & Wang, Pidong & Wang, Qiang & Bi, Sifeng & Peng, Rui & Behrensdorf, Jasper & Beer, Michael, 2021. "Reliability analysis of a complex system with hybrid structures and multi-level dependent life metrics," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    3. Vlad Stefan Barbu & Nicolas Vergne, 2019. "Reliability and Survival Analysis for Drifting Markov Models: Modeling and Estimation," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1407-1429, December.
    4. Cao, Yingsai & Liu, Sifeng & Fang, Zhigeng & Dong, Wenjie, 2020. "Modeling ageing effects for multi-state systems with multiple components subject to competing and dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    5. Liu, Yu & Liu, Qinzhen & Xie, Chaoyang & Wei, Fayuan, 2019. "Reliability assessment for multi-state systems with state transition dependency," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 276-288.
    6. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    7. Li, Yan-Fu & Zio, Enrico, 2012. "A multi-state model for the reliability assessment of a distributed generation system via universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 28-36.
    8. M. López-Campos & F. Kristjanpoller & P. Viveros & R. Pascual, 2018. "Reliability Assessment Methodology for Massive Manufacturing Using Multi-Function Equipment," Complexity, Hindawi, vol. 2018, pages 1-8, February.
    9. Dong, Wenjie & Liu, Sifeng & Tao, Liangyan & Cao, Yingsai & Fang, Zhigeng, 2019. "Reliability variation of multi-state components with inertial effect of deteriorating output performances," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 176-185.
    10. Fazlollahtabar, Hamed & Saidi-Mehrabad, Mohammad & Balakrishnan, Jaydeep, 2015. "Integrated Markov-neural reliability computation method: A case for multiple automated guided vehicle system," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 34-44.
    11. Wang, Yong & Li, Lin & Huang, Shuhong & Chang, Qing, 2012. "Reliability and covariance estimation of weighted k-out-of-n multi-state systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 138-147.
    12. Wang, Lizhi & Pan, Rong & Wang, Xiaohong & Fan, Wenhui & Xuan, Jinquan, 2017. "A Bayesian reliability evaluation method with different types of data from multiple sources," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 128-135.
    13. Postnikov, Ivan & Stennikov, Valery & Mednikova, Ekaterina & Penkovskii, Andrey, 2018. "Methodology for optimization of component reliability of heat supply systems," Applied Energy, Elsevier, vol. 227(C), pages 365-374.
    14. Yontay, Petek & Pan, Rong, 2016. "A computational Bayesian approach to dependency assessment in system reliability," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 104-114.
    15. Mi, Jinhua & Li, Yan-Feng & Peng, Weiwen & Huang, Hong-Zhong, 2018. "Reliability analysis of complex multi-state system with common cause failure based on evidential networks," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 71-81.
    16. Zheng, Yi-Xuan & Xiahou, Tangfan & Liu, Yu & Xie, Chaoyang, 2021. "Structure function learning of hierarchical multi-state systems with incomplete observation sequences," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Zhao, Yunfei & Gao, Wei & Smidts, Carol, 2021. "Sequential Bayesian inference of transition rates in the hidden Markov model for multi-state system degradation," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    18. Song, Xiaogang & Zhai, Zhengjun & Liu, Yidong & Han, Jie, 2018. "A stochastic approach for the reliability evaluation of multi-state systems with dependent components," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 257-266.
    19. Kong, Yaonan & Ye, Zhisheng, 2017. "Goodness-of-fit tests in the multi-state Markov model," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 16-24.
    20. Rebello, Sinda & Yu, Hongyang & Ma, Lin, 2018. "An integrated approach for system functional reliability assessment using Dynamic Bayesian Network and Hidden Markov Model," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 124-135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:166:y:2017:i:c:p:3-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.