IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v199y2020ics0951832019308725.html
   My bibliography  Save this article

Modeling ageing effects for multi-state systems with multiple components subject to competing and dependent failure processes

Author

Listed:
  • Cao, Yingsai
  • Liu, Sifeng
  • Fang, Zhigeng
  • Dong, Wenjie

Abstract

This paper explores how the ageing process affects the two dependent and competing failure processes in the context of multi-state systems with multiple components. Ageing process is assumed to result in the decline of the product's intrinsic capacity to resist the exposed stresses. The state residence time is explicitly modeled with the consideration of the potential transition gap (the total number of states that the state transition process needs to stride across) and the cumulative ageing probability which is a measure of the likelihood that the product strength degrades. The random shock is assumed to cause abrupt changes in the one-step transition probabilities. The damage size is jointly determined by the shock magnitude and the cumulative ageing probability. Reliability analysis is conducted based on the continuous-time semi-Markov chain. Reliability functions for the degradation, abrupt failure, and competing failure processes are obtained respectively. An illustrative example of a multi-state transformer with four multi-state components is studied to demonstrate how the proposed method can be applied to the engineering practice.

Suggested Citation

  • Cao, Yingsai & Liu, Sifeng & Fang, Zhigeng & Dong, Wenjie, 2020. "Modeling ageing effects for multi-state systems with multiple components subject to competing and dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:reensy:v:199:y:2020:i:c:s0951832019308725
    DOI: 10.1016/j.ress.2020.106890
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019308725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106890?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khac Tuan Huynh & Anne Barros & Christophe Bérenguer & Inma T. Castro, 2011. "A periodic inspection and replacement policy for systems subject to competing failure modes due to degradation and traumatic events," Post-Print hal-00790728, HAL.
    2. Lisnianski, Anatoly & Elmakias, David & Laredo, David & Ben Haim, Hanoch, 2012. "A multi-state Markov model for a short-term reliability analysis of a power generating unit," Reliability Engineering and System Safety, Elsevier, vol. 98(1), pages 1-6.
    3. Huynh, K.T. & Barros, A. & Bérenguer, C. & Castro, I.T., 2011. "A periodic inspection and replacement policy for systems subject to competing failure modes due to degradation and traumatic events," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 497-508.
    4. Li, Yan-Fu & Zio, Enrico, 2012. "A multi-state model for the reliability assessment of a distributed generation system via universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 28-36.
    5. van Noortwijk, J.M. & van der Weide, J.A.M. & Kallen, M.J. & Pandey, M.D., 2007. "Gamma processes and peaks-over-threshold distributions for time-dependent reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1651-1658.
    6. Graves, T.L. & Hamada, M.S. & Klamann, R. & Koehler, A. & Martz, H.F., 2007. "A fully Bayesian approach for combining multi-level information in multi-state fault tree quantification," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1476-1483.
    7. Hao Peng & Qianmei Feng & David Coit, 2010. "Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes," IISE Transactions, Taylor & Francis Journals, vol. 43(1), pages 12-22.
    8. Gregory Levitin, 2005. "The Universal Generating Function in Reliability Analysis and Optimization," Springer Series in Reliability Engineering, Springer, number 978-1-84628-245-4, January.
    9. Lei Jiang & Qianmei Feng & David W. Coit, 2015. "Modeling zoned shock effects on stochastic degradation in dependent failure processes," IISE Transactions, Taylor & Francis Journals, vol. 47(5), pages 460-470, May.
    10. Eryilmaz, Serkan, 2015. "Assessment of a multi-state system under a shock model," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 1-8.
    11. Caballé, N.C. & Castro, I.T. & Pérez, C.J. & Lanza-Gutiérrez, J.M., 2015. "A condition-based maintenance of a dependent degradation-threshold-shock model in a system with multiple degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 98-109.
    12. Koosha Rafiee & Qianmei Feng & David Coit, 2014. "Reliability modeling for dependent competing failure processes with changing degradation rate," IISE Transactions, Taylor & Francis Journals, vol. 46(5), pages 483-496.
    13. Levitin, Gregory, 2007. "Block diagram method for analyzing multi-state systems with uncovered failures," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 727-734.
    14. van Noortwijk, J.M., 2009. "A survey of the application of gamma processes in maintenance," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 2-21.
    15. Fan, Mengfei & Zeng, Zhiguo & Zio, Enrico & Kang, Rui, 2017. "Modeling dependent competing failure processes with degradation-shock dependence," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 422-430.
    16. Yousefi, Nooshin & Coit, David W. & Song, Sanling & Feng, Qianmei, 2019. "Optimization of on-condition thresholds for a system of degrading components with competing dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Jingyi & Yu, Yang & Yu, Jianxing & Chang, Xueying & Xu, Lixin & Zhang, Wenhao, 2023. "A Markov resilience assessment framework for tension leg platform under mooring failure," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Chen, Ying & Wang, Yanfang & Li, Shumin & Kang, Rui, 2023. "Hybrid uncertainty quantification of dependent competing failure process with chance theory," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Wang, Han & Liao, Haitao & Ma, Xiaobing, 2022. "Stochastic Multi-phase Modeling and Health Assessment for Systems Based on Degradation Branching Processes," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Wang, Jingjing & Zheng, Rui & Lin, Tianran, 2022. "Maintenance modeling for balanced systems subject to two competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yao & Wang, Yashun & Fan, Zhengwei & Bai, Guanghan & Chen, Xun, 2021. "Reliability modeling and a statistical inference method of accelerated degradation testing with multiple stresses and dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Jingyi Liu & Yugang Zhang & Bifeng Song, 2019. "Reliability and maintenance modeling for competing failures with intermission considered," Journal of Risk and Reliability, , vol. 233(5), pages 898-907, October.
    3. Hu, Jiawen & Shen, Jingyuan & Shen, Lijuan, 2020. "Opportunistic maintenance for two-component series systems subject to dependent degradation and shock," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    4. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2021. "Reliability analysis for systems based on degradation rates and hard failure thresholds changing with degradation levels," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    6. Zeng, Zhiguo & Barros, Anne & Coit, David, 2023. "Dependent failure behavior modeling for risk and reliability: A systematic and critical literature review," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    7. Yousefi, Nooshin & Coit, David W. & Song, Sanling, 2020. "Reliability analysis of systems considering clusters of dependent degrading components," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    8. N. C. Caballé & I. T. Castro, 2019. "Assessment of the maintenance cost and analysis of availability measures in a finite life cycle for a system subject to competing failures," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 255-290, March.
    9. Dong, Wenjie & Liu, Sifeng & Bae, Suk Joo & Cao, Yingsai, 2021. "Reliability modelling for multi-component systems subject to stochastic deterioration and generalized cumulative shock damages," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    10. Che, Haiyang & Zeng, Shengkui & Guo, Jianbin & Wang, Yao, 2018. "Reliability modeling for dependent competing failure processes with mutually dependent degradation process and shock process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 168-178.
    11. Huynh, K.T. & Grall, A. & Bérenguer, C., 2017. "Assessment of diagnostic and prognostic condition indices for efficient and robust maintenance decision-making of systems subject to stress corrosion cracking," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 237-254.
    12. Gao, Hongda & Cui, Lirong & Qiu, Qingan, 2019. "Reliability modeling for degradation-shock dependence systems with multiple species of shocks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 133-143.
    13. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    14. Hai-Kun Wang & Yan-Feng Li & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Remaining useful life estimation under degradation and shock damage," Journal of Risk and Reliability, , vol. 229(3), pages 200-208, June.
    15. Cheng, Yao & Wei, Yian & Liao, Haitao, 2022. "Optimal sampling-based sequential inspection and maintenance plans for a heterogeneous product with competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    16. Qingan Qiu & Lirong Cui & Dejing Kong, 2019. "Availability and maintenance modeling for a two-component system with dependent failures over a finite time horizon," Journal of Risk and Reliability, , vol. 233(2), pages 200-210, April.
    17. Tingting Huang & Songming Chen & Yuepu Zhao & Wei Dai, 2023. "Reliability assessment of degradation processes with random shocks considering recoverable shock damages," Journal of Risk and Reliability, , vol. 237(6), pages 1150-1162, December.
    18. Cao, Shihao & Wang, Zhihua & Liu, Chengrui & Wu, Qiong & Li, Junxing & Ouyang, Xiangmin, 2023. "A novel solution for comprehensive competing failure process considering two-phase degradation and non-Poisson shock," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    19. Kong, Dejing & Qin, Chengwei & He, Yong & Cui, Lirong, 2017. "Sensor-based calibrations to improve reliability of systems subject to multiple dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 101-113.
    20. Wu, Bei & Ding, Dong, 2022. "A gamma process based model for systems subject to multiple dependent competing failure processes under Markovian environments," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:199:y:2020:i:c:s0951832019308725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.