IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v46y2014i5p483-496.html
   My bibliography  Save this article

Reliability modeling for dependent competing failure processes with changing degradation rate

Author

Listed:
  • Koosha Rafiee
  • Qianmei Feng
  • David Coit

Abstract

This article proposes reliability models for devices subject to dependent competing failure processes of degradation and random shocks with a changing degradation rate according to particular random shock patterns. The two dependent failure processes are soft failure due to continuous degradation, in addition to sudden degradation increases caused by random shocks, and hard failure due to the same shock process. In complex devices such as Micro-Electro-Mechanical Systems the degradation rate can change when the system becomes more susceptible to fatigue and deteriorates faster, as a result of withstanding shocks. This article considers four different shock patterns that can increase the degradation rate: (i) generalized extreme shock model: when the first shock above a critical value is recorded; (ii) generalized δ-shock model: when the inter-arrival time of two sequential shocks is less than a threshold δ; (iii) generalized m-shock model: when m shocks greater than a critical level are recorded; and (iv) generalized run shock model: when there is a run of n consecutive shocks that are greater than a critical value. Numerical examples are presented to illustrate the developed reliability models, along with sensitivity analysis.

Suggested Citation

  • Koosha Rafiee & Qianmei Feng & David Coit, 2014. "Reliability modeling for dependent competing failure processes with changing degradation rate," IISE Transactions, Taylor & Francis Journals, vol. 46(5), pages 483-496.
  • Handle: RePEc:taf:uiiexx:v:46:y:2014:i:5:p:483-496
    DOI: 10.1080/0740817X.2013.812270
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2013.812270
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2013.812270?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:46:y:2014:i:5:p:483-496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.