IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v231y2023ics0951832022005543.html
   My bibliography  Save this article

A Markov resilience assessment framework for tension leg platform under mooring failure

Author

Listed:
  • Wu, Jingyi
  • Yu, Yang
  • Yu, Jianxing
  • Chang, Xueying
  • Xu, Lixin
  • Zhang, Wenhao

Abstract

During the service life of Tension Leg Platform (TLP), it may be exposed to various risk, with mooring failure being one of the most catastrophic events. Resilience, as an integrated assessment philosophy, can evaluate the overall post-event response performance and further improve system's operation safety. In this paper, a Markov resilience assessment framework for TLP under mooring failure is firstly proposed. The failure process and recovery process are mathematically described by Markov process and continuous-time Markov process, respectively. The internal and external effect has been taken into account, including extreme environment, structural degradation, recovery process schedule and structural strength etc. The resilience assessment framework is developed by 2 aspects, including robustness and recovery resilience. Besides, an illustrative example is developed as a walk-through of proposed methodology. The applications here demonstrate the versatility of the Markov framework towards handling resilience problems with varying levels of complexity, especially the offshore structure systems.

Suggested Citation

  • Wu, Jingyi & Yu, Yang & Yu, Jianxing & Chang, Xueying & Xu, Lixin & Zhang, Wenhao, 2023. "A Markov resilience assessment framework for tension leg platform under mooring failure," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:reensy:v:231:y:2023:i:c:s0951832022005543
    DOI: 10.1016/j.ress.2022.108939
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022005543
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108939?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Zhiguo & Fang, Yi-Ping & Zhai, Qingqing & Du, Shijia, 2021. "A Markov reward process-based framework for resilience analysis of multistate energy systems under the threat of extreme events," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    2. Yarveisy, Rioshar & Gao, Chuan & Khan, Faisal, 2020. "A simple yet robust resilience assessment metrics," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    3. Sperstad, Iver Bakken & Kjølle, Gerd H. & Gjerde, Oddbjørn, 2020. "A comprehensive framework for vulnerability analysis of extraordinary events in power systems," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    4. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    5. Eldosouky, AbdelRahman & Saad, Walid & Mandayam, Narayan, 2021. "Resilient critical infrastructure: Bayesian network analysis and contract-Based optimization," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    6. Hu, Jinqiu & Khan, Faisal & Zhang, Laibin, 2021. "Dynamic resilience assessment of the Marine LNG offloading system," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    7. Cao, Yingsai & Liu, Sifeng & Fang, Zhigeng & Dong, Wenjie, 2020. "Modeling ageing effects for multi-state systems with multiple components subject to competing and dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    8. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Gloria Pumpuni‐Lenss & Timothy Blackburn & Andreas Garstenauer, 2017. "Resilience in Complex Systems: An Agent‐Based Approach," Systems Engineering, John Wiley & Sons, vol. 20(2), pages 158-172, March.
    10. Nicholson, Charles D. & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "Flow-based vulnerability measures for network component importance: Experimentation with preparedness planning," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 62-73.
    11. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    12. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    13. Moslehi, Salim & Reddy, T. Agami, 2018. "Sustainability of integrated energy systems: A performance-based resilience assessment methodology," Applied Energy, Elsevier, vol. 228(C), pages 487-498.
    14. Wu, Jingyi & Yu, Yang & Cheng, Siyuan & Li, Zhenmian & Yu, Jianxing, 2022. "Probabilistic multilevel robustness assessment framework for a TLP under mooring failure considering uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    15. Nan, Cen & Sansavini, Giovanni, 2017. "A quantitative method for assessing resilience of interdependent infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 35-53.
    16. Younesi, Abdollah & Shayeghi, Hossein & Safari, Amin & Siano, Pierluigi, 2020. "Assessing the resilience of multi microgrid based widespread power systems against natural disasters using Monte Carlo Simulation," Energy, Elsevier, vol. 207(C).
    17. Cassottana, Beatrice & Shen, Lijuan & Tang, Loon Ching, 2019. "Modeling the recovery process: A key dimension of resilience," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    18. Eti, M.C. & Ogaji, S.O.T. & Probert, S.D., 2007. "Integrating reliability, availability, maintainability and supportability with risk analysis for improved operation of the Afam thermal power-station," Applied Energy, Elsevier, vol. 84(2), pages 202-221, February.
    19. Han, Lin & Zhao, Xudong & Chen, Zhilong & Gong, Huadong & Hou, Benwei, 2021. "Assessing resilience of urban lifeline networks to intentional attacks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    20. Yang, Bofan & Zhang, Lin & Zhang, Bo & Wang, Wenfeng & Zhang, Minglinag, 2021. "Resilience Metric of Equipment System: Theory, Measurement and Sensitivity Analysis," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    21. Shital A. Thekdi & Joost Santos, 2019. "Decision‐Making Analytics Using Plural Resilience Parameters for Adaptive Management of Complex Systems," Risk Analysis, John Wiley & Sons, vol. 39(4), pages 871-889, April.
    22. Fang, Yi-Ping & Sansavini, Giovanni, 2019. "Optimum post-disruption restoration under uncertainty for enhancing critical infrastructure resilience," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 1-11.
    23. Toroghi, Shahaboddin Sean H. & Thomas, Valerie M., 2020. "A framework for the resilience analysis of electric infrastructure systems including temporary generation systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    24. Filippini, Roberto & Silva, Andrés, 2014. "A modeling framework for the resilience analysis of networked systems-of-systems based on functional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 82-91.
    25. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington Y., 2019. "Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 62-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiu, Na & Liu, Xiuquan & Li, Yanwei & Hu, Pengji & Chang, Yuanjiang & Chen, Guoming & Meng, Huixing, 2024. "Dynamic catastrophe analysis of deepwater mooring platform/riser/wellhead coupled system under ISW," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    2. Caetano, Henrique O. & N., Luiz Desuó & Fogliatto, Matheus S.S. & Maciel, Carlos D., 2024. "Resilience assessment of critical infrastructures using dynamic Bayesian networks and evidence propagation," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Wu, Jingyi & Yu, Yang & Jin, Zihang & Zhang, Wenhao, 2024. "Multi-dimensional resilience assessment framework of offshore structure under mooring failure," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    4. Dui, Hongyan & Lu, Yaohui & Wu, Shaomin, 2024. "Competing risks-based resilience approach for multi-state systems under multiple shocks," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    3. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng, 2022. "A demand-based framework for resilience assessment of multistate networks under disruptions," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Wu, Jingyi & Yu, Yang & Jin, Zihang & Zhang, Wenhao, 2024. "Multi-dimensional resilience assessment framework of offshore structure under mooring failure," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    6. Sun, Hao & Wang, Haiqing & Yang, Ming & Reniers, Genserik, 2022. "A STAMP-based approach to quantitative resilience assessment of chemical process systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Sun, Qin & Li, Hongxu & Wang, Yuzhi & Zhang, Yingchao, 2022. "Multi-swarm-based cooperative reconfiguration model for resilient unmanned weapon system-of-systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Caputo, A.C. & Donati, L. & Salini, P., 2023. "Estimating resilience of manufacturing plants to physical disruptions: Model and application," International Journal of Production Economics, Elsevier, vol. 266(C).
    9. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Shuai Lin & Limin Jia & Hengrun Zhang & Yanhui Wang, 2021. "A method for assessing resilience of high-speed EMUs considering a network-based system topology and performance data," Journal of Risk and Reliability, , vol. 235(5), pages 877-895, October.
    12. Xu, Min & Li, Guoyuan & Chen, Anthony, 2024. "Resilience-driven post-disaster restoration of interdependent infrastructure systems under different decision-making environments," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    13. Umunnakwe, A. & Huang, H. & Oikonomou, K. & Davis, K.R., 2021. "Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Ramadhani, Adhitya & Khan, Faisal & Colbourne, Bruce & Ahmed, Salim & Taleb-Berrouane, Mohammed, 2022. "Resilience assessment of offshore structures subjected to ice load considering complex dependencies," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    15. Yu, Yaocheng & Shuai, Bin & Huang, Wencheng, 2024. "Resilience evaluation of train control on-board system based on multi-dimensional continuous-time Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    16. Wang, Shuliang & Guo, Zhaoyang & Huang, Xiaodi & Zhang, Jianhua, 2024. "A three-stage model of quantifying and analyzing power network resilience based on network theory," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    17. Senkel, Anne & Bode, Carsten & Schmitz, Gerhard, 2021. "Quantification of the resilience of integrated energy systems using dynamic simulation," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    18. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    19. Maddah, Negin & Heydari, Babak, 2024. "Building back better: Modeling decentralized recovery in sociotechnical systems using strategic network dynamics," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    20. Kameshwar, Sabarethinam & Cox, Daniel T. & Barbosa, Andre R. & Farokhnia, Karim & Park, Hyoungsu & Alam, Mohammad S. & van de Lindt, John W., 2019. "Probabilistic decision-support framework for community resilience: Incorporating multi-hazards, infrastructure interdependencies, and resilience goals in a Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:231:y:2023:i:c:s0951832022005543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.