IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v209y2021ics0951832021000168.html
   My bibliography  Save this article

Quantification of the resilience of integrated energy systems using dynamic simulation

Author

Listed:
  • Senkel, Anne
  • Bode, Carsten
  • Schmitz, Gerhard

Abstract

This paper demonstrates the use of dynamic simulation to model and assess the resilience of an integrated energy system. First, several approaches from the field of resilience assessment are evaluated, and the most suitable is chosen and adapted to develop a metric that is applicable to dynamic simulation results. Second, as proof of concept, a model of an integrated energy system (gas, heat and power sector) is presented and evaluated using the introduced metric. To demonstrate how changes in the system architecture influence the resilience, two modifications are tested. It can be shown that the metric is suitable to quantify the resilience of an integrated energy system and assess suggestions for improvements. Therefore, it can also be added and compared to other quantitative metrics such as CO2 emissions or costs.

Suggested Citation

  • Senkel, Anne & Bode, Carsten & Schmitz, Gerhard, 2021. "Quantification of the resilience of integrated energy systems using dynamic simulation," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:reensy:v:209:y:2021:i:c:s0951832021000168
    DOI: 10.1016/j.ress.2021.107447
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021000168
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107447?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    2. Toroghi, Shahaboddin Sean H. & Thomas, Valerie M., 2020. "A framework for the resilience analysis of electric infrastructure systems including temporary generation systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    3. Paul Waide & Conrad U. Brunner, 2011. "Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems," IEA Energy Papers 2011/7, OECD Publishing.
    4. Nan, Cen & Sansavini, Giovanni, 2017. "A quantitative method for assessing resilience of interdependent infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 35-53.
    5. Francis, Royce & Bekera, Behailu, 2014. "A metric and frameworks for resilience analysis of engineered and infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 90-103.
    6. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington Y., 2019. "Resilience assessment for interdependent urban infrastructure systems using dynamic network flow models," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 62-79.
    7. Hans Dieter Hellige, 2019. "The metaphorical processes in the history of the resilience notion and the rise of the ecosystem resilience theory," Chapters, in: Handbook on Resilience of Socio-Technical Systems, chapter 3, pages 30-51, Edward Elgar Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian, Lanping & Bai, Yang & Wang, Wenya & Meng, Fanyi & Chen, Zhisong, 2023. "Natural gas crisis, system resilience and emergency responses: A China case," Energy, Elsevier, vol. 276(C).
    2. Venkateswaran V, Balaji & Saini, Devender Kumar & Sharma, Madhu, 2021. "Techno-economic hardening strategies to enhance distribution system resilience against earthquake," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    3. Wu, Jiansong & Zhang, Linlin & Bai, Yiping & Reniers, Genserik, 2022. "A safety investment optimization model for power grid enterprises based on System Dynamics and Bayesian network theory," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. Linas Martišauskas & Juozas Augutis & Ričardas Krikštolaitis & Rolandas Urbonas & Inga Šarūnienė & Vytis Kopustinskas, 2022. "A Framework to Assess the Resilience of Energy Systems Based on Quantitative Indicators," Energies, MDPI, vol. 15(11), pages 1-25, May.
    5. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Shang, Ce & Lin, Teng & Li, Canbing & Wang, Keyou & Ai, Qian, 2021. "Joining resilience and reliability evaluation against both weather and ageing causes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Jesus Beyza & Jose M. Yusta, 2021. "Integrated Risk Assessment for Robustness Evaluation and Resilience Optimisation of Power Systems after Cascading Failures," Energies, MDPI, vol. 14(7), pages 1-18, April.
    8. Geng, Sunyue & Liu, Sifeng & Fang, Zhigeng, 2022. "A demand-based framework for resilience assessment of multistate networks under disruptions," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Zhang, Xi & Tu, Haicheng & Guo, Jianbo & Ma, Shicong & Li, Zhen & Xia, Yongxiang & Tse, Chi Kong, 2021. "Braess paradox and double-loop optimization method to enhance power grid resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Chen, Zhang & Liu, Jun & Liu, Xinglei, 2022. "GPU accelerated power flow calculation of integrated electricity and heat system with component-oriented modeling of district heating network," Applied Energy, Elsevier, vol. 305(C).
    11. Ramadhani, Adhitya & Khan, Faisal & Colbourne, Bruce & Ahmed, Salim & Taleb-Berrouane, Mohammed, 2022. "Resilience assessment of offshore structures subjected to ice load considering complex dependencies," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    12. Guan, Aobo & Zhou, Suyang & Gu, Wei & Liu, Zhong & Liu, Hengmen, 2022. "A novel dynamic simulation approach for Gas-Heat-Electric coupled system," Applied Energy, Elsevier, vol. 315(C).
    13. Xu, Sheng & Tu, Haicheng & Xia, Yongxiang, 2023. "Resilience enhancement of renewable cyber–physical power system against malware attacks," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    2. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Wu, Jingyi & Yu, Yang & Yu, Jianxing & Chang, Xueying & Xu, Lixin & Zhang, Wenhao, 2023. "A Markov resilience assessment framework for tension leg platform under mooring failure," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Jingjing Kong & Slobodan P. Simonovic & Chao Zhang, 2019. "Resilience Assessment of Interdependent Infrastructure Systems: A Case Study Based on Different Response Strategies," Sustainability, MDPI, vol. 11(23), pages 1-31, November.
    8. Das, Laya & Munikoti, Sai & Natarajan, Balasubramaniam & Srinivasan, Babji, 2020. "Measuring smart grid resilience: Methods, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    9. Caputo, A.C. & Donati, L. & Salini, P., 2023. "Estimating resilience of manufacturing plants to physical disruptions: Model and application," International Journal of Production Economics, Elsevier, vol. 266(C).
    10. Tiong, Achara & Vergara, Hector A., 2023. "Evaluation of network expansion decisions for resilient interdependent critical infrastructures with different topologies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 42(C).
    11. Caputo, Antonio C. & Kalemi, Bledar & Paolacci, Fabrizio & Corritore, Daniele, 2020. "Computing resilience of process plants under Na-Tech events: Methodology and application to sesmic loading scenarios," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    12. Umunnakwe, A. & Huang, H. & Oikonomou, K. & Davis, K.R., 2021. "Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Yang, Zhuyu & Barroca, Bruno & Laffréchine, Katia & Weppe, Alexandre & Bony-Dandrieux, Aurélia & Daclin, Nicolas, 2023. "A multi-criteria framework for critical infrastructure systems resilience," International Journal of Critical Infrastructure Protection, Elsevier, vol. 42(C).
    14. Behzadi, Golnar & O’Sullivan, Michael Justin & Olsen, Tava Lennon, 2020. "On metrics for supply chain resilience," European Journal of Operational Research, Elsevier, vol. 287(1), pages 145-158.
    15. Junqing Tang & Hans R. Heinimann, 2019. "Quantitative evaluation of consecutive resilience cycles in stock market performance: A systems-oriented approach," Papers 1903.03201, arXiv.org.
    16. Laiany Rodrigues Marinho & Márcio das Chagas Moura & Beatriz Sales Cunha & Isis Didier Lins, 2020. "Optimization of Investments in the Resilience of Water Distribution Systems Subject to Interruptions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(3), pages 929-954, February.
    17. Zhu, Chunli & Wu, Jianping & Liu, Mingyu & Luan, Jianlin & Li, Tingting & Hu, Kezhen, 2020. "Cyber-physical resilience modelling and assessment of urban roadway system interrupted by rainfall," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    18. Xu, Zizhen & Chopra, Shauhrat S., 2022. "Network-based Assessment of Metro Infrastructure with a Spatial–temporal Resilience Cycle Framework," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    19. Tiong, Achara & Vergara, Hector A., 2023. "A two-stage stochastic multi-objective resilience optimization model for network expansion of interdependent power–water networks under disruption," International Journal of Critical Infrastructure Protection, Elsevier, vol. 40(C).
    20. Márcio das Chagas Moura & Helder Henrique Lima Diniz & Enrique López Droguett & Beatriz Sales da Cunha & Isis Didier Lins & Vicente Ribeiro Simoni, 2017. "Embedding resilience in the design of the electricity supply for industrial clients," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-33, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:209:y:2021:i:c:s0951832021000168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.