IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v180y2018icp168-178.html
   My bibliography  Save this article

Reliability modeling for dependent competing failure processes with mutually dependent degradation process and shock process

Author

Listed:
  • Che, Haiyang
  • Zeng, Shengkui
  • Guo, Jianbin
  • Wang, Yao

Abstract

Many systems experience dependent competing failure processes resulting from simultaneous exposure to degradation processes and random shocks. Moreover, the degradation process and shock process may be mutually dependent. On the one hand, shocks can cause sudden degradation increments, which accelerate degradation process. On the other hand, the occurrence intensity of shock process will increase with the accumulation of degradation. Due to the mutual dependence between degradation and random shocks, the arrival shocks can cause abrupt degradation and then facilitate the occurrence of random shocks recursively. Therefore, the intensity is dependent on the number of arrival shocks, and the shock process cannot be described by the Poisson process used in previous studies. In this paper, a Facilitation model, which is a special type of Markov point process, is introduced to model the shock process. Furthermore, based on the Facilitation model, a novel analytical reliability model with the mutual dependence is developed. A case of a jet pipe servo valve is presented to demonstrate the developed model. The result showed that the reliability declines significantly when considering the mutual dependence.

Suggested Citation

  • Che, Haiyang & Zeng, Shengkui & Guo, Jianbin & Wang, Yao, 2018. "Reliability modeling for dependent competing failure processes with mutually dependent degradation process and shock process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 168-178.
  • Handle: RePEc:eee:reensy:v:180:y:2018:i:c:p:168-178
    DOI: 10.1016/j.ress.2018.07.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018301248
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.07.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rafiee, Koosha & Feng, Qianmei & Coit, David W., 2017. "Reliability assessment of competing risks with generalized mixed shock models," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 1-11.
    2. Yang, Li & Zhao, Yu & Peng, Rui & Ma, Xiaobing, 2018. "Hybrid preventive maintenance of competing failures under random environment," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 130-140.
    3. Ruiz-Castro, Juan Eloy, 2016. "Markov counting and reward processes for analysing the performance of a complex system subject to random inspections," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 155-168.
    4. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2013. "Reliability analysis of multi-trigger binary systems subject to competing failures," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 9-17.
    5. Yao Wang & Shengkui Zeng & Jianbin Guo, 2013. "Time-Dependent Reliability-Based Design Optimization Utilizing Nonintrusive Polynomial Chaos," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-16, June.
    6. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2018. "Bivariate preventive maintenance of systems with lifetimes dependent on a random shock process," European Journal of Operational Research, Elsevier, vol. 266(1), pages 122-134.
    7. Hao Peng & Qianmei Feng & David Coit, 2010. "Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes," IISE Transactions, Taylor & Francis Journals, vol. 43(1), pages 12-22.
    8. Yuan-Jian Yang & Weiwen Peng & Debiao Meng & Shun-Peng Zhu & Hong-Zhong Huang, 2014. "Reliability analysis of direct drive electrohydraulic servo valves based on a wear degradation process and individual differences," Journal of Risk and Reliability, , vol. 228(6), pages 621-630, December.
    9. Bocchetti, D. & Giorgio, M. & Guida, M. & Pulcini, G., 2009. "A competing risk model for the reliability of cylinder liners in marine Diesel engines," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1299-1307.
    10. Zhou, Xiaojun & Wu, Changjie & Li, Yanting & Xi, Lifeng, 2016. "A preventive maintenance model for leased equipment subject to internal degradation and external shock damage," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 1-7.
    11. Song, Sanling & Coit, David W. & Feng, Qianmei, 2014. "Reliability for systems of degrading components with distinct component shock sets," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 115-124.
    12. Sanling Song & David W. Coit & Qianmei Feng, 2016. "Reliability analysis of multiple-component series systems subject to hard and soft failures with dependent shock effects," IISE Transactions, Taylor & Francis Journals, vol. 48(8), pages 720-735, August.
    13. Lei Jiang & Qianmei Feng & David W. Coit, 2015. "Modeling zoned shock effects on stochastic degradation in dependent failure processes," IISE Transactions, Taylor & Francis Journals, vol. 47(5), pages 460-470, May.
    14. Caballé, N.C. & Castro, I.T. & Pérez, C.J. & Lanza-Gutiérrez, J.M., 2015. "A condition-based maintenance of a dependent degradation-threshold-shock model in a system with multiple degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 98-109.
    15. Koosha Rafiee & Qianmei Feng & David Coit, 2014. "Reliability modeling for dependent competing failure processes with changing degradation rate," IISE Transactions, Taylor & Francis Journals, vol. 46(5), pages 483-496.
    16. Wang, Yujie & Xing, Liudong & Wang, Honggang & Levitin, Gregory, 2015. "Combinatorial analysis of body sensor networks subject to probabilistic competing failures," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 388-398.
    17. Bin Liu & Min Xie & Way Kuo, 2016. "Reliability modeling and preventive maintenance of load-sharing systemswith degrading components," IISE Transactions, Taylor & Francis Journals, vol. 48(8), pages 699-709, August.
    18. Xing, Liudong & Levitin, Gregory, 2010. "Combinatorial analysis of systems with competing failures subject to failure isolation and propagation effects," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1210-1215.
    19. Fan, Mengfei & Zeng, Zhiguo & Zio, Enrico & Kang, Rui, 2017. "Modeling dependent competing failure processes with degradation-shock dependence," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 422-430.
    20. W Zhu & M Fouladirad & C Bérenguer, 2015. "Bi-criteria maintenance policies for a system subject to competing wear and δ-shock failures," Journal of Risk and Reliability, , vol. 229(6), pages 485-500, December.
    21. Yan-Hui Lin & Yan-Fu Li & Enrico Zio, 2016. "Reliability assessment of systems subject to dependent degradation processes and random shocks," IISE Transactions, Taylor & Francis Journals, vol. 48(11), pages 1072-1085, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yao & Wang, Yashun & Fan, Zhengwei & Bai, Guanghan & Chen, Xun, 2021. "Reliability modeling and a statistical inference method of accelerated degradation testing with multiple stresses and dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Dong, Wenjie & Liu, Sifeng & Bae, Suk Joo & Cao, Yingsai, 2021. "Reliability modelling for multi-component systems subject to stochastic deterioration and generalized cumulative shock damages," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    3. Jingyi Liu & Yugang Zhang & Bifeng Song, 2019. "Reliability and maintenance modeling for competing failures with intermission considered," Journal of Risk and Reliability, , vol. 233(5), pages 898-907, October.
    4. Ye, Zhenggeng & Cai, Zhiqiang & Zhou, Fuli & Zhao, Jiangbin & Zhang, Pan, 2019. "Reliability analysis for series manufacturing system with imperfect inspection considering the interaction between quality and degradation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 345-356.
    5. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2021. "Reliability analysis for systems based on degradation rates and hard failure thresholds changing with degradation levels," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Yang, Li & Zhao, Yu & Peng, Rui & Ma, Xiaobing, 2018. "Hybrid preventive maintenance of competing failures under random environment," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 130-140.
    7. Yousefi, Nooshin & Coit, David W. & Song, Sanling, 2020. "Reliability analysis of systems considering clusters of dependent degrading components," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    8. Lyu, Hao & Qu, Hongchen & Yang, Zaiyou & Ma, Li & Lu, Bing & Pecht, Michael, 2023. "Reliability analysis of dependent competing failure processes with time-varying δ shock model," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    9. Wu, Bei & Zhang, Yamei & Zhao, Songzheng, 2023. "Modeling coupled effects of dynamic environments and zoned shocks on systems under dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    10. Sun, Fuqiang & Li, Hao & Cheng, Yuanyuan & Liao, Haitao, 2021. "Reliability analysis for a system experiencing dependent degradation processes and random shocks based on a nonlinear Wiener process model," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Geng, Yixuan & Wang, Shaoping & Shi, Jian & Zhang, Yuwei & Wang, Weijie, 2023. "Reliability modeling of phased degradation under external shocks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    12. Cao, Yingsai & Liu, Sifeng & Fang, Zhigeng & Dong, Wenjie, 2020. "Modeling ageing effects for multi-state systems with multiple components subject to competing and dependent failure processes," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    13. Wang, Yujie & Xing, Liudong & Levitin, Gregory & Huang, Ning, 2018. "Probabilistic competing failure analysis in phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 37-51.
    14. Zhao, Xian & Wang, Siqi & Wang, Xiaoyue & Cai, Kui, 2018. "A multi-state shock model with mutative failure patterns," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 1-11.
    15. Wang, Jia & Han, Xu & Zhang, Yun-an & Bai, Guanghan, 2021. "Modeling the varying effects of shocks for a multi-stage degradation process," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. Zhang, Jianchun & Zhao, Yu & Ma, Xiaobing, 2020. "Reliability modeling methods for load-sharing k-out-of-n system subject to discrete external load," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    17. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    18. Fang, Jiayue & Kang, Rui & Chen, Ying, 2021. "Reliability evaluation of non-repairable systems with failure mechanism trigger effect," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    19. Wang, Chaonan & Xing, Liudong & Peng, Rui & Pan, Zhusheng, 2017. "Competing failure analysis in phased-mission systems with multiple functional dependence groups," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 24-33.
    20. Zhao, Guilin & Xing, Liudong, 2021. "Reliability analysis of body sensor networks subject to random isolation time," Reliability Engineering and System Safety, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:180:y:2018:i:c:p:168-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.