IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v257y2025ipas0951832025000365.html
   My bibliography  Save this article

Real-time adaptation for time-series signal prediction using label-aware neural processes

Author

Listed:
  • Chung, Seokhyun
  • Kontar, Raed Al

Abstract

Building a predictive model that rapidly adapts to real-time condition monitoring (CM) time-series data is critical for engineering systems/units. Unfortunately, many current methods suffer from a trade-off between representation power and agility in online settings. In this paper, we propose a neural process-based approach that addresses this trade-off. It encodes available observations within a CM signal into a representation space and then reconstructs the signal’s history and evolution for prediction. Once trained, the model can encode an arbitrary number of observations without requiring retraining, enabling on-the-spot real-time predictions along with quantified uncertainty and can be readily updated as more online data is gathered. Furthermore, our model is designed to incorporate partial information on qualitative factors (e.g., missing labels) from individual units. This integration not only enhances individualized predictions for each unit but also enables joint inference for both signals and their associated labels. Numerical studies on both synthetic and real-world data in degradation modeling highlight the advantageous features of our model in real-time adaptation, enhanced signal prediction with uncertainty quantification, and joint prediction for labels and signals.

Suggested Citation

  • Chung, Seokhyun & Kontar, Raed Al, 2025. "Real-time adaptation for time-series signal prediction using label-aware neural processes," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
  • Handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000365
    DOI: 10.1016/j.ress.2025.110833
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832025000365
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2025.110833?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xia, Min & Shao, Haidong & Williams, Darren & Lu, Siliang & Shu, Lei & de Silva, Clarence W., 2021. "Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    3. Wen, Yuxin & Wu, Jianguo & Das, Devashish & Tseng, Tzu-Liang(Bill), 2018. "Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 113-124.
    4. Gao, Hongda & Cui, Lirong & Qiu, Qingan, 2019. "Reliability modeling for degradation-shock dependence systems with multiple species of shocks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 133-143.
    5. Zhang, Shuyi & Zhai, Qingqing & Li, Yaqiu, 2023. "Degradation modeling and RUL prediction with Wiener process considering measurable and unobservable external impacts," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    6. Fallahdizcheh, Amirhossein & Wang, Chao, 2022. "Transfer learning of degradation modeling and prognosis based on multivariate functional analysis with heterogeneous sampling rates," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    7. Wang, Pingping & Tang, Yincai & Joo Bae, Suk & He, Yong, 2018. "Bayesian analysis of two-phase degradation data based on change-point Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 244-256.
    8. Duan, Chaoqun & Makis, Viliam & Deng, Chao, 2020. "A two-level Bayesian early fault detection for mechanical equipment subject to dependent failure modes," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Changhua & Xing, Yuanxing & Du, Dangbo & Si, Xiaosheng & Zhang, Jianxun, 2023. "Remaining useful life estimation for two-phase nonlinear degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    3. Zhuang, Liangliang & Xu, Ancha & Wang, Yijun & Tang, Yincai, 2024. "Remaining useful life prediction for two-phase degradation model based on reparameterized inverse Gaussian process," European Journal of Operational Research, Elsevier, vol. 319(3), pages 877-890.
    4. Zhang, Jian-Xun & Zhang, Jia-Ling & Zhang, Zheng-Xin & Li, Tian-Mei & Si, Xiao-Sheng, 2024. "Remaining useful life prediction for stochastic degrading devices incorporating quantization," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    5. Chen, Zhen & Li, Yaping & Zhou, Di & Xia, Tangbin & Pan, Ershun, 2021. "Two-phase degradation data analysis with change-point detection based on Gaussian process degradation model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Xu, Ancha & Shen, Lijuan, 2018. "Improved on-line estimation for gamma process," Statistics & Probability Letters, Elsevier, vol. 143(C), pages 67-73.
    7. Ma, Chenyang & Li, Yongbo & Wang, Xianzhi & Cai, Zhiqiang, 2023. "Early fault diagnosis of rotating machinery based on composite zoom permutation entropy," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    9. Jahani, Salman & Zhou, Shiyu & Veeramani, Dharmaraj, 2021. "Stochastic prognostics under multiple time-varying environmental factors," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.
    11. Hachem, Hassan & Vu, Hai Canh & Fouladirad, Mitra, 2024. "Different methods for RUL prediction considering sensor degradation," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Zhang, Shuyi & Zhai, Qingqing & Li, Yaqiu, 2023. "Degradation modeling and RUL prediction with Wiener process considering measurable and unobservable external impacts," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    13. Gao, Hongda & Cui, Lirong & Dong, Qinglai, 2020. "Reliability modeling for a two-phase degradation system with a change point based on a Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. Liao, Guobo & Yin, Hongpeng & Chen, Min & Lin, Zheng, 2021. "Remaining useful life prediction for multi-phase deteriorating process based on Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    15. Wang, Zhijian & Jiang, Pengwei & Chen, Zhongxin & Li, Yanfeng & Ren, Weibo & Dong, Lei & Du, Wenhua & Wang, Junyuan & Zhang, Xiaohong & Shi, Hui, 2025. "Remaining useful life prediction method based on two-phase adaptive drift Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 258(C).
    16. Patrick Zschech & Kai Heinrich & Raphael Bink & Janis S. Neufeld, 2019. "Prognostic Model Development with Missing Labels," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 327-343, June.
    17. Hu, Yang & Baraldi, Piero & Di Maio, Francesco & Zio, Enrico, 2015. "A particle filtering and kernel smoothing-based approach for new design component prognostics," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 19-31.
    18. Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    19. Mei Li & Wei Ning & Yubin Tian, 2024. "Change Point Test for Length-Biased Lognormal Distribution under Random Right Censoring," Mathematics, MDPI, vol. 12(11), pages 1-20, June.
    20. Zhang, Jian-Xun & Hu, Chang-Hua & He, Xiao & Si, Xiao-Sheng & Liu, Yang & Zhou, Dong-Hua, 2017. "Lifetime prognostics for deteriorating systems with time-varying random jumps," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 338-350.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:257:y:2025:i:pa:s0951832025000365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.