IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v241y2025ics0960148124023358.html
   My bibliography  Save this article

A novel hierarchical failure analysis approach targeting the operation and maintenance of floating offshore wind turbines

Author

Listed:
  • Tao, Zijian
  • Zhu, Ronghua
  • Hu, Jiajun
  • Wang, Mingchuan
  • Chen, Qinghai
  • Wang, Chizhong

Abstract

This paper proposes a novel failure analysis approach, hierarchical Failure Mode and Effects Analysis (FMEA), aimed at identifying critical components during the operation and maintenance phase of floating offshore wind turbines. The system’s degradation process is categorized into four stages based on maintenance actions, and a three-level Cost Priority Number calculation framework is developed to quantify cost-related risks across these stages. By integrating a maintenance model, this approach incorporates the uncertainties of maintenance strategies into the criticality analysis of components and transforms maintenance data into input parameters for evaluation indices. The objective is to address the limitations of traditional cost-based methods in representing maintenance processes and the challenges posed by insufficient maintenance data. Overall, the proposed approach offers targeted insights to optimize maintenance strategies, enhancing the operation and maintenance of floating offshore wind farms.

Suggested Citation

  • Tao, Zijian & Zhu, Ronghua & Hu, Jiajun & Wang, Mingchuan & Chen, Qinghai & Wang, Chizhong, 2025. "A novel hierarchical failure analysis approach targeting the operation and maintenance of floating offshore wind turbines," Renewable Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124023358
    DOI: 10.1016/j.renene.2024.122267
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124023358
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122267?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng Yang & Jun Jia & Ke He & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Ming Wu & Haoyang Cui, 2023. "Comprehensive Analysis and Evaluation of the Operation and Maintenance of Offshore Wind Power Systems: A Survey," Energies, MDPI, vol. 16(14), pages 1-39, July.
    2. Ahsen, Anette von & Petruschke, Lars & Frick, Nicholas, 2022. "Sustainability Failure Mode and Effects Analysis - A systematic literature review," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 132981, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Pinciroli, Luca & Baraldi, Piero & Ballabio, Guido & Compare, Michele & Zio, Enrico, 2022. "Optimization of the Operation and Maintenance of renewable energy systems by Deep Reinforcement Learning," Renewable Energy, Elsevier, vol. 183(C), pages 752-763.
    4. Li, He & Teixeira, Angelo P. & Guedes Soares, C., 2020. "A two-stage Failure Mode and Effect Analysis of offshore wind turbines," Renewable Energy, Elsevier, vol. 162(C), pages 1438-1461.
    5. Lubing Xie & Xiaoming Rui & Shuai Li & Xin Hu, 2019. "Maintenance Optimization of Offshore Wind Turbines Based on an Opportunistic Maintenance Strategy," Energies, MDPI, vol. 12(14), pages 1-26, July.
    6. Zhou, P. & Yin, P.T., 2019. "An opportunistic condition-based maintenance strategy for offshore wind farm based on predictive analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 1-9.
    7. He, Rui & Tian, Zhigang & Wang, Yifei & Zuo, Mingjian & Guo, Ziwei, 2023. "Condition-based maintenance optimization for multi-component systems considering prognostic information and degraded working efficiency," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. Mahmood Shafiee & Fateme Dinmohammadi, 2014. "An FMEA-Based Risk Assessment Approach for Wind Turbine Systems: A Comparative Study of Onshore and Offshore," Energies, MDPI, vol. 7(2), pages 1-24, February.
    9. Arias Chao, Manuel & Kulkarni, Chetan & Goebel, Kai & Fink, Olga, 2022. "Fusing physics-based and deep learning models for prognostics," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Koukoura, Sofia & Scheu, Matti Niclas & Kolios, Athanasios, 2021. "Influence of extended potential-to-functional failure intervals through condition monitoring systems on offshore wind turbine availability," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    11. Carpitella, Silvia & Certa, Antonella & Izquierdo, Joaquín & La Fata, Concetta Manuela, 2018. "A combined multi-criteria approach to support FMECA analyses: A real-world case," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 394-402.
    12. Neves-Moreira, Fábio & Veldman, Jasper & Teunter, Ruud H., 2021. "Service operation vessels for offshore wind farm maintenance: Optimal stock levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    13. Nacef Tazi & Eric Châtelet & Youcef Bouzidi, 2017. "Using a Hybrid Cost-FMEA Analysis for Wind Turbine Reliability Analysis," Energies, MDPI, vol. 10(3), pages 1-20, February.
    14. Centeno-Telleria, Manu & Aizpurua, Jose Ignacio & Penalba, Markel, 2023. "Computationally efficient analytical O&M model for strategic decision-making in offshore renewable energy systems," Energy, Elsevier, vol. 285(C).
    15. Ahsen, Anette von & Petruschke, Lars & Frick, Nicholas, 2022. "Sustainability Failure Mode and Effects Analysis - A systematic literature review," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 133275, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    16. Rinaldi, Giovanni & Garcia-Teruel, Anna & Jeffrey, Henry & Thies, Philipp R. & Johanning, Lars, 2021. "Incorporating stochastic operation and maintenance models into the techno-economic analysis of floating offshore wind farms," Applied Energy, Elsevier, vol. 301(C).
    17. Huang, Jia & You, Jian-Xin & Liu, Hu-Chen & Song, Ming-Shun, 2020. "Failure mode and effect analysis improvement: A systematic literature review and future research agenda," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    18. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2023. "A closed-loop maintenance strategy for offshore wind farms: Incorporating dynamic wind farm states and uncertainty-awareness in decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    19. Erguido, A. & Crespo Márquez, A. & Castellano, E. & Gómez Fernández, J.F., 2017. "A dynamic opportunistic maintenance model to maximize energy-based availability while reducing the life cycle cost of wind farms," Renewable Energy, Elsevier, vol. 114(PB), pages 843-856.
    20. Ding, Fangfang & Tian, Zhigang, 2012. "Opportunistic maintenance for wind farms considering multi-level imperfect maintenance thresholds," Renewable Energy, Elsevier, vol. 45(C), pages 175-182.
    21. Malte Jansen & Iain Staffell & Lena Kitzing & Sylvain Quoilin & Edwin Wiggelinkhuizen & Bernard Bulder & Iegor Riepin & Felix Müsgens, 2020. "Offshore wind competitiveness in mature markets without subsidy," Nature Energy, Nature, vol. 5(8), pages 614-622, August.
    22. Kang, Jichuan & Sun, Liping & Guedes Soares, C., 2019. "Fault Tree Analysis of floating offshore wind turbines," Renewable Energy, Elsevier, vol. 133(C), pages 1455-1467.
    23. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    24. Caglayan, Dilara Gulcin & Ryberg, David Severin & Heinrichs, Heidi & Linßen, Jochen & Stolten, Detlef & Robinius, Martin, 2019. "The techno-economic potential of offshore wind energy with optimized future turbine designs in Europe," Applied Energy, Elsevier, vol. 255(C).
    25. Yan, Rundong & Dunnett, Sarah & Jackson, Lisa, 2023. "Impact of condition monitoring on the maintenance and economic viability of offshore wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    26. Peeters, J.F.W. & Basten, R.J.I. & Tinga, T., 2018. "Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 36-44.
    27. Sun, Yu & Li, He & Sun, Liping & Guedes Soares, C., 2023. "Failure Analysis of Floating Offshore Wind Turbines with Correlated Failures," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    28. Tian, Zhigang & Zhang, Han, 2022. "Wind farm predictive maintenance considering component level repairs and economic dependency," Renewable Energy, Elsevier, vol. 192(C), pages 495-506.
    29. McMorland, J. & Collu, M. & McMillan, D. & Carroll, J. & Coraddu, A., 2023. "Opportunistic maintenance for offshore wind: A review and proposal of future framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    30. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    31. Li, He & Guedes Soares, C, 2022. "Assessment of failure rates and reliability of floating offshore wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2024. "Operation and maintenance management for offshore wind farms integrating inventory control and health information," Renewable Energy, Elsevier, vol. 231(C).
    2. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    3. Li, He & Diaz, H. & Guedes Soares, C., 2021. "A developed failure mode and effect analysis for floating offshore wind turbine support structures," Renewable Energy, Elsevier, vol. 164(C), pages 133-145.
    4. Li, He & Teixeira, Angelo P. & Guedes Soares, C., 2020. "A two-stage Failure Mode and Effect Analysis of offshore wind turbines," Renewable Energy, Elsevier, vol. 162(C), pages 1438-1461.
    5. Luo, Jiaxuan & Luo, Xiaofang & Ma, Xiandong & Zan, Yingfei & Bai, Xu, 2025. "An integrated condition-based opportunistic maintenance framework for offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    6. He, Rui & Tian, Zhigang & Wang, Yifei & Zuo, Mingjian & Guo, Ziwei, 2023. "Condition-based maintenance optimization for multi-component systems considering prognostic information and degraded working efficiency," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Centeno-Telleria, Manu & Yue, Hong & Carrol, James & Aizpurua, Jose I. & Penalba, Markel, 2024. "O&M-aware techno-economic assessment for floating offshore wind farms: A geospatial evaluation off the North Sea and the Iberian Peninsula," Applied Energy, Elsevier, vol. 371(C).
    8. McMorland, J. & Collu, M. & McMillan, D. & Carroll, J. & Coraddu, A., 2023. "Opportunistic maintenance for offshore wind: A review and proposal of future framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    9. Li, He & Guedes Soares, C, 2022. "Assessment of failure rates and reliability of floating offshore wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    10. Liu, Min & Lu, Da-Gang & Qin, Jianjun & Miao, Yi-Zhi & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2024. "Risk-informed integrated design optimization for offshore wind farm electrical systems," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    11. Fallahi, F. & Bakir, I. & Yildirim, M. & Ye, Z., 2022. "A chance-constrained optimization framework for wind farms to manage fleet-level availability in condition based maintenance and operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Si, Guojin & Xia, Tangbin & Wang, Dong & Gebraeel, Nagi & Pan, Ershun & Xi, Lifeng, 2025. "Maintenance scheduling and vessel routing for offshore wind farms with multiple ports considering day-ahead wind-wave predictions," Applied Energy, Elsevier, vol. 379(C).
    13. Altinpulluk, Nur Banu & Altinpulluk, Deniz & Yildirim, Murat & Zhao, Shijia & Qiu, Feng & Greco, Aaron, 2025. "A survey on degradation modeling, prognosis, and prognostics-driven maintenance in wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    14. Dui, Hongyan & Zhang, Yulu & Bai, Guanghan, 2024. "Analysis of variable system cost and maintenance strategy in life cycle considering different failure modes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    15. Cuesta, Jokin & Leturiondo, Urko & Vidal, Yolanda & Pozo, Francesc, 2025. "A review of prognostics and health management techniques in wind energy," Reliability Engineering and System Safety, Elsevier, vol. 260(C).
    16. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    17. Bakir, I. & Yildirim, M. & Ursavas, E., 2021. "An integrated optimization framework for multi-component predictive analytics in wind farm operations & maintenance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    18. Dhalmahapatra, Krantiraditya & Garg, Ashish & Singh, Kritika & Xavier, Nirmal Francis & Maiti, J., 2022. "An integrated RFUCOM – RTOPSIS approach for failure modes and effects analysis: A case of manufacturing industry," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    19. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2023. "A closed-loop maintenance strategy for offshore wind farms: Incorporating dynamic wind farm states and uncertainty-awareness in decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    20. Centeno-Telleria, Manu & Yue, Hong & Carrol, James & Penalba, Markel & Aizpurua, Jose I., 2025. "Assessing heavy maintenance alternatives for floating offshore wind farms: Towing vs. onsite replacement strategies," Applied Energy, Elsevier, vol. 377(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:241:y:2025:i:c:s0960148124023358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.