IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5562-d1200420.html
   My bibliography  Save this article

Comprehensive Analysis and Evaluation of the Operation and Maintenance of Offshore Wind Power Systems: A Survey

Author

Listed:
  • Cheng Yang

    (College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China)

  • Jun Jia

    (College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China)

  • Ke He

    (College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China)

  • Liang Xue

    (College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China)

  • Chao Jiang

    (College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China)

  • Shuangyu Liu

    (Shanghai Guoyun Information Technology Co., Ltd., Shanghai 201210, China)

  • Bochao Zhao

    (School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China)

  • Ming Wu

    (China Electric Power Research Institute, State Grid Corporation of China, Beijing 100192, China)

  • Haoyang Cui

    (College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 201306, China)

Abstract

Offshore Wind Power Systems (OWPS) offer great energy and environmental advantages, but also pose significant Operation and Maintenance (O&M) challenges. In this survey, we analyze these challenges and propose some optimization strategies and technologies for OWPS comprehensively. The existing literature review mainly focuses on a certain field of offshore wind power O&M, but lacks a comprehensive introduction to offshore wind power. We consider the energy efficiency, reliability, safety, and economy of OWPS from various aspects, such as offshore wind and wave energy utilization, offshore wind turbine components, and wind power operation parameters, and compare them with onshore wind power systems. We suggest that OWPS can benefit from advanced design optimization, digital twin, monitoring and forecasting, fault diagnosis, and other technologies to enhance their O&M performance. This paper aims to provide theoretical guidance and practical reference for the technological innovation and sustainable development of OWPS.

Suggested Citation

  • Cheng Yang & Jun Jia & Ke He & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Ming Wu & Haoyang Cui, 2023. "Comprehensive Analysis and Evaluation of the Operation and Maintenance of Offshore Wind Power Systems: A Survey," Energies, MDPI, vol. 16(14), pages 1-39, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5562-:d:1200420
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5562/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5562/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giovanni Rinaldi & Philipp R. Thies & Lars Johanning, 2021. "Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    2. Ravi Pandit & David Infield, 2018. "Gaussian Process Operational Curves for Wind Turbine Condition Monitoring," Energies, MDPI, vol. 11(7), pages 1-20, June.
    3. Wen, Binrong & Tian, Xinliang & Dong, Xingjian & Peng, Zhike & Zhang, Wenming & Wei, Kexiang, 2019. "A numerical study on the angle of attack to the blade of a horizontal-axis offshore floating wind turbine under static and dynamic yawed conditions," Energy, Elsevier, vol. 168(C), pages 1138-1156.
    4. C, O. Mauricio Hernandez & Shadman, Milad & Amiri, Mojtaba Maali & Silva, Corbiniano & Estefen, Segen F. & La Rovere, Emilio, 2021. "Environmental impacts of offshore wind installation, operation and maintenance, and decommissioning activities: A case study of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Rinaldi, Giovanni & Garcia-Teruel, Anna & Jeffrey, Henry & Thies, Philipp R. & Johanning, Lars, 2021. "Incorporating stochastic operation and maintenance models into the techno-economic analysis of floating offshore wind farms," Applied Energy, Elsevier, vol. 301(C).
    6. Sarker, Bhaba R. & Faiz, Tasnim Ibn, 2017. "Minimizing transportation and installation costs for turbines in offshore wind farms," Renewable Energy, Elsevier, vol. 101(C), pages 667-679.
    7. Qin, Chao & Saunders, Gordon & Loth, Eric, 2017. "Offshore wind energy storage concept for cost-of-rated-power savings," Applied Energy, Elsevier, vol. 201(C), pages 148-157.
    8. Huang, Yu-Fong & Gan, Xing-Jia & Chiueh, Pei-Te, 2017. "Life cycle assessment and net energy analysis of offshore wind power systems," Renewable Energy, Elsevier, vol. 102(PA), pages 98-106.
    9. Xu, Zifei & Bashir, Musa & Yang, Yang & Wang, Xinyu & Wang, Jin & Ekere, Nduka & Li, Chun, 2022. "Multisensory collaborative damage diagnosis of a 10 MW floating offshore wind turbine tendons using multi-scale convolutional neural network with attention mechanism," Renewable Energy, Elsevier, vol. 199(C), pages 21-34.
    10. Lubing Xie & Xiaoming Rui & Shuai Li & Xin Hu, 2019. "Maintenance Optimization of Offshore Wind Turbines Based on an Opportunistic Maintenance Strategy," Energies, MDPI, vol. 12(14), pages 1-26, July.
    11. Guglielmo D’Amico & Filippo Petroni & Salvatore Vergine, 2022. "Ramp Rate Limitation of Wind Power: An Overview," Energies, MDPI, vol. 15(16), pages 1-15, August.
    12. Lin, Zi & Liu, Xiaolei, 2020. "Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network," Energy, Elsevier, vol. 201(C).
    13. Kaifeng Bi & Lingxi Xie & Hengheng Zhang & Xin Chen & Xiaotao Gu & Qi Tian, 2023. "Accurate medium-range global weather forecasting with 3D neural networks," Nature, Nature, vol. 619(7970), pages 533-538, July.
    14. Mohamad Kaddoura & Johan Tivander & Sverker Molander, 2020. "Life Cycle Assessment of Electricity Generation from an Array of Subsea Tidal Kite Prototypes," Energies, MDPI, vol. 13(2), pages 1-18, January.
    15. Li, Zhanwei & Wen, Binrong & Wei, Kexiang & Yang, Wenxian & Peng, Zhike & Zhang, Wenming, 2020. "Flexible dynamic modeling and analysis of drive train for Offshore Floating Wind Turbine," Renewable Energy, Elsevier, vol. 145(C), pages 1292-1305.
    16. Yun-Ho Seo & Moo Sung Ryu & Ki-Yong Oh, 2020. "Dynamic Characteristics of an Offshore Wind Turbine with Tripod Suction Buckets via Full-Scale Testing," Complexity, Hindawi, vol. 2020, pages 1-16, March.
    17. Roggenburg, Michael & Esquivel-Puentes, Helber A. & Vacca, Andrea & Bocanegra Evans, Humberto & Garcia-Bravo, Jose M. & Warsinger, David M. & Ivantysynova, Monika & Castillo, Luciano, 2020. "Techno-economic analysis of a hydraulic transmission for floating offshore wind turbines," Renewable Energy, Elsevier, vol. 153(C), pages 1194-1204.
    18. Johnston, Barry & Foley, Aoife & Doran, John & Littler, Timothy, 2020. "Levelised cost of energy, A challenge for offshore wind," Renewable Energy, Elsevier, vol. 160(C), pages 876-885.
    19. Sara C. Pryor & Rebecca J. Barthelmie & Jeremy Cadence & Ebba Dellwik & Charlotte B. Hasager & Stephan T. Kral & Joachim Reuder & Marianne Rodgers & Marijn Veraart, 2022. "Atmospheric Drivers of Wind Turbine Blade Leading Edge Erosion: Review and Recommendations for Future Research," Energies, MDPI, vol. 15(22), pages 1-41, November.
    20. Grant, Elenya & Johnson, Kathryn & Damiani, Rick & Phadnis, Mandar & Pao, Lucy, 2023. "Buoyancy can ballast control for increased power generation of a floating offshore wind turbine with a light-weight semi-submersible platform," Applied Energy, Elsevier, vol. 330(PB).
    21. Kaldellis, J.K. & Apostolou, D., 2017. "Life cycle energy and carbon footprint of offshore wind energy. Comparison with onshore counterpart," Renewable Energy, Elsevier, vol. 108(C), pages 72-84.
    22. Seljom, Pernille & Rosenberg, Eva & Fidje, Audun & Haugen, Jan Erik & Meir, Michaela & Rekstad, John & Jarlset, Thore, 2011. "Modelling the effects of climate change on the energy system—A case study of Norway," Energy Policy, Elsevier, vol. 39(11), pages 7310-7321.
    23. Shahram Hanifi & Xiaolei Liu & Zi Lin & Saeid Lotfian, 2020. "A Critical Review of Wind Power Forecasting Methods—Past, Present and Future," Energies, MDPI, vol. 13(15), pages 1-24, July.
    24. Lin, Zi & Cevasco, Debora & Collu, Maurizio, 2020. "A methodology to develop reduced-order models to support the operation and maintenance of offshore wind turbines," Applied Energy, Elsevier, vol. 259(C).
    25. Ahsan, Dewan & Pedersen, Søren, 2018. "The influence of stakeholder groups in operation and maintenance services of offshore wind farms: Lesson from Denmark," Renewable Energy, Elsevier, vol. 125(C), pages 819-828.
    26. Neves-Moreira, Fábio & Veldman, Jasper & Teunter, Ruud H., 2021. "Service operation vessels for offshore wind farm maintenance: Optimal stock levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    27. Farid Khazaeli Moghadam & Nils Desch, 2023. "Life Cycle Assessment of Various PMSG-Based Drivetrain Concepts for 15 MW Offshore Wind Turbines Applications," Energies, MDPI, vol. 16(3), pages 1-26, February.
    28. Estefania Artigao & Sofia Koukoura & Andrés Honrubia-Escribano & James Carroll & Alasdair McDonald & Emilio Gómez-Lázaro, 2018. "Current Signature and Vibration Analyses to Diagnose an In-Service Wind Turbine Drive Train," Energies, MDPI, vol. 11(4), pages 1-18, April.
    29. Harriet Fox & Ajit C. Pillai & Daniel Friedrich & Maurizio Collu & Tariq Dawood & Lars Johanning, 2022. "A Review of Predictive and Prescriptive Offshore Wind Farm Operation and Maintenance," Energies, MDPI, vol. 15(2), pages 1-27, January.
    30. Gentils, Theo & Wang, Lin & Kolios, Athanasios, 2017. "Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm," Applied Energy, Elsevier, vol. 199(C), pages 187-204.
    31. Dawid Augustyn & Martin D. Ulriksen & John D. Sørensen, 2021. "Reliability Updating of Offshore Wind Substructures by Use of Digital Twin Information," Energies, MDPI, vol. 14(18), pages 1-23, September.
    32. Shafiee, Mahmood, 2015. "Maintenance logistics organization for offshore wind energy: Current progress and future perspectives," Renewable Energy, Elsevier, vol. 77(C), pages 182-193.
    33. Taylor, James W. & Jeon, Jooyoung, 2018. "Probabilistic forecasting of wave height for offshore wind turbine maintenance," European Journal of Operational Research, Elsevier, vol. 267(3), pages 877-890.
    34. Yang, Wenxian & Tian, Wenye & Wei, Kexiang & Peng, Zhike & Huang, Zhonghua, 2019. "Research on a cost-effective measure dedicated to stabilizing offshore wind farm crew transfer vessels," Renewable Energy, Elsevier, vol. 133(C), pages 275-283.
    35. Mansoor Khan & Essam A Al-Ammar & Muhammad Rashid Naeem & Wonsuk Ko & Hyeong-Jin Choi & Hyun-Koo Kang, 2021. "Forecasting renewable energy for environmental resilience through computational intelligence," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-23, August.
    36. Stock-Williams, Clym & Swamy, Siddharth Krishna, 2019. "Automated daily maintenance planning for offshore wind farms," Renewable Energy, Elsevier, vol. 133(C), pages 1393-1403.
    37. Romero, Antonio & Soua, Slim & Gan, Tat-Hean & Wang, Bin, 2018. "Condition monitoring of a wind turbine drive train based on its power dependant vibrations," Renewable Energy, Elsevier, vol. 123(C), pages 817-827.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Anne P. M. Velenturf, 2021. "A Framework and Baseline for the Integration of a Sustainable Circular Economy in Offshore Wind," Energies, MDPI, vol. 14(17), pages 1-41, September.
    3. Han Peng & Songyin Li & Linjian Shangguan & Yisa Fan & Hai Zhang, 2023. "Analysis of Wind Turbine Equipment Failure and Intelligent Operation and Maintenance Research," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    4. McMorland, J. & Collu, M. & McMillan, D. & Carroll, J. & Coraddu, A., 2023. "Opportunistic maintenance for offshore wind: A review and proposal of future framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. McMorland, Jade & Flannigan, Callum & Carroll, James & Collu, Maurizio & McMillan, David & Leithead, William & Coraddu, Andrea, 2022. "A review of operations and maintenance modelling with considerations for novel wind turbine concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    6. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    7. Liu, Hongwei & Zhang, Pengpeng & Gu, Yajing & Shu, Yongdong & Song, Jiajun & Lin, Yonggang & Li, Wei, 2022. "Dynamics analysis of the power train of 650 kW horizontal-axis tidal current turbine," Renewable Energy, Elsevier, vol. 194(C), pages 51-67.
    8. Brooks, Sam & Mahmood, Minhal & Roy, Rajkumar & Manolesos, Marinos & Salonitis, Konstantinos, 2023. "Self-reconfiguration simulations of turbines to reduce uneven farm degradation," Renewable Energy, Elsevier, vol. 206(C), pages 1301-1314.
    9. Liu, Min & Qin, Jianjun & Lu, Da-Gang & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2022. "Towards resilience of offshore wind farms: A framework and application to asset integrity management," Applied Energy, Elsevier, vol. 322(C).
    10. Pennock, Shona & Vanegas-Cantarero, María M. & Bloise-Thomaz, Tianna & Jeffrey, Henry & Dickson, Matthew J., 2022. "Life cycle assessment of a point-absorber wave energy array," Renewable Energy, Elsevier, vol. 190(C), pages 1078-1088.
    11. Mingyu Li & Dongxiao Niu & Zhengsen Ji & Xiwen Cui & Lijie Sun, 2021. "Forecast Research on Multidimensional Influencing Factors of Global Offshore Wind Power Investment Based on Random Forest and Elastic Net," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    12. Yakoub, Ghali & Mathew, Sathyajith & Leal, Joao, 2023. "Intelligent estimation of wind farm performance with direct and indirect ‘point’ forecasting approaches integrating several NWP models," Energy, Elsevier, vol. 263(PD).
    13. Upma Singh & Mohammad Rizwan & Muhannad Alaraj & Ibrahim Alsaidan, 2021. "A Machine Learning-Based Gradient Boosting Regression Approach for Wind Power Production Forecasting: A Step towards Smart Grid Environments," Energies, MDPI, vol. 14(16), pages 1-21, August.
    14. Hailun Xie & Lars Johanning, 2023. "A Hierarchical Met-Ocean Data Selection Model for Fast O&M Simulation in Offshore Renewable Energy Systems," Energies, MDPI, vol. 16(3), pages 1-20, February.
    15. Gilbert, Ciaran & Browell, Jethro & McMillan, David, 2021. "Probabilistic access forecasting for improved offshore operations," International Journal of Forecasting, Elsevier, vol. 37(1), pages 134-150.
    16. Yashuang Feng & Lixiao Zhang, 2023. "The GHG Intensities of Wind Power Plants in China from a Life-Cycle Perspective: The Impacts of Geographical Location, Turbine Technology and Management Level," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    17. Wang, Bohan & Deng, Ziwei & Zhang, Baocheng, 2022. "Simulation of a novel wind–wave hybrid power generation system with hydraulic transmission," Energy, Elsevier, vol. 238(PB).
    18. Bogdan Bochenek & Jakub Jurasz & Adam Jaczewski & Gabriel Stachura & Piotr Sekuła & Tomasz Strzyżewski & Marcin Wdowikowski & Mariusz Figurski, 2021. "Day-Ahead Wind Power Forecasting in Poland Based on Numerical Weather Prediction," Energies, MDPI, vol. 14(8), pages 1-18, April.
    19. Fallahi, F. & Bakir, I. & Yildirim, M. & Ye, Z., 2022. "A chance-constrained optimization framework for wind farms to manage fleet-level availability in condition based maintenance and operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Summerfield-Ryan, Oliver & Park, Susan, 2023. "The power of wind: The global wind energy industry's successes and failures," Ecological Economics, Elsevier, vol. 210(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5562-:d:1200420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.