IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v194y2022icp51-67.html
   My bibliography  Save this article

Dynamics analysis of the power train of 650 kW horizontal-axis tidal current turbine

Author

Listed:
  • Liu, Hongwei
  • Zhang, Pengpeng
  • Gu, Yajing
  • Shu, Yongdong
  • Song, Jiajun
  • Lin, Yonggang
  • Li, Wei

Abstract

Power trains are an important component of the tidal current energy conversion systems; however, the variable drive-torque and unbalanced moments produced by flow shear and turbulence cause power trains to vibrate. When the scale of the tidal current turbine increases, the vibration problem becomes prominent. The dynamic characteristics of power trains are complex. In this study, the power train of a 650 kW horizontal-axis tidal current turbine was studied. The power train adopted a low-speed-ratio semi-direct drive scheme proposed by Zhejiang University. A mathematical model of the power train was constructed. The influence of external excitations (including tidal current condition, unbalanced moments, and internal excitation) on dynamic characteristics was studied using simulations and sea trials. The simulation results showed that the radial and torsional vibrations of the low- and the high-speed shafts increased when the tidal current velocity increased. The fluctuation range of the bearing load increased under increases in the pitch and yaw moments. The meshing motion of the planetary gear plays a leading role in the vibration of low- and high-speed shafts. The power train model was validated by comparing the results of the experiment and simulation.

Suggested Citation

  • Liu, Hongwei & Zhang, Pengpeng & Gu, Yajing & Shu, Yongdong & Song, Jiajun & Lin, Yonggang & Li, Wei, 2022. "Dynamics analysis of the power train of 650 kW horizontal-axis tidal current turbine," Renewable Energy, Elsevier, vol. 194(C), pages 51-67.
  • Handle: RePEc:eee:renene:v:194:y:2022:i:c:p:51-67
    DOI: 10.1016/j.renene.2022.05.113
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122007649
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.05.113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helsen, Jan & Peeters, Pepijn & Vanslambrouck, Klaas & Vanhollebeke, Frederik & Desmet, Wim, 2014. "The dynamic behavior induced by different wind turbine gearbox suspension methods assessed by means of the flexible multibody technique," Renewable Energy, Elsevier, vol. 69(C), pages 336-346.
    2. Xu, Quan-kun & Liu, Hong-wei & Lin, Yong-gang & Yin, Xiu-xing & Li, Wei & Gu, Ya-jing, 2015. "Development and experiment of a 60 kW horizontal-axis marine current power system," Energy, Elsevier, vol. 88(C), pages 149-156.
    3. Helsen, Jan & Vanhollebeke, Frederik & Marrant, Ben & Vandepitte, Dirk & Desmet, Wim, 2011. "Multibody modelling of varying complexity for modal behaviour analysis of wind turbine gearboxes," Renewable Energy, Elsevier, vol. 36(11), pages 3098-3113.
    4. Wei, Sha & Zhao, Jingshan & Han, Qinkai & Chu, Fulei, 2015. "Dynamic response analysis on torsional vibrations of wind turbine geared transmission system with uncertainty," Renewable Energy, Elsevier, vol. 78(C), pages 60-67.
    5. Romero, Antonio & Soua, Slim & Gan, Tat-Hean & Wang, Bin, 2018. "Condition monitoring of a wind turbine drive train based on its power dependant vibrations," Renewable Energy, Elsevier, vol. 123(C), pages 817-827.
    6. Zhu, Caichao & Xu, Xiangyang & Liu, Huaiju & Luo, Tianhong & Zhai, Hongfei, 2014. "Research on dynamical characteristics of wind turbine gearboxes with flexible pins," Renewable Energy, Elsevier, vol. 68(C), pages 724-732.
    7. Li, Zhanwei & Wen, Binrong & Wei, Kexiang & Yang, Wenxian & Peng, Zhike & Zhang, Wenming, 2020. "Flexible dynamic modeling and analysis of drive train for Offshore Floating Wind Turbine," Renewable Energy, Elsevier, vol. 145(C), pages 1292-1305.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. W. Dheelibun Remigius & Anand Natarajan, 2022. "A review of wind turbine drivetrain loads and load effects for fixed and floating wind turbines," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    2. Liu, Xianzeng & Yang, Yuhu & Zhang, Jun, 2018. "Resultant vibration signal model based fault diagnosis of a single stage planetary gear train with an incipient tooth crack on the sun gear," Renewable Energy, Elsevier, vol. 122(C), pages 65-79.
    3. He, Guolin & Ding, Kang & Wu, Xiaomeng & Yang, Xiaoqing, 2019. "Dynamics modeling and vibration modulation signal analysis of wind turbine planetary gearbox with a floating sun gear," Renewable Energy, Elsevier, vol. 139(C), pages 718-729.
    4. Wei, Sha & Zhao, Jingshan & Han, Qinkai & Chu, Fulei, 2015. "Dynamic response analysis on torsional vibrations of wind turbine geared transmission system with uncertainty," Renewable Energy, Elsevier, vol. 78(C), pages 60-67.
    5. Wang, Shuaishuai & Nejad, Amir R. & Bachynski, Erin E. & Moan, Torgeir, 2020. "Effects of bedplate flexibility on drivetrain dynamics: Case study of a 10 MW spar type floating wind turbine," Renewable Energy, Elsevier, vol. 161(C), pages 808-824.
    6. Cheng Yang & Jun Jia & Ke He & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Ming Wu & Haoyang Cui, 2023. "Comprehensive Analysis and Evaluation of the Operation and Maintenance of Offshore Wind Power Systems: A Survey," Energies, MDPI, vol. 16(14), pages 1-39, July.
    7. Fan, Zhixin & Zhu, Caichao, 2019. "The optimization and the application for the wind turbine power-wind speed curve," Renewable Energy, Elsevier, vol. 140(C), pages 52-61.
    8. García Márquez, Fausto Pedro & Peco Chacón, Ana María, 2020. "A review of non-destructive testing on wind turbines blades," Renewable Energy, Elsevier, vol. 161(C), pages 998-1010.
    9. Liu, Wenyi, 2016. "Design and kinetic analysis of wind turbine blade-hub-tower coupled system," Renewable Energy, Elsevier, vol. 94(C), pages 547-557.
    10. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    11. Guerine, A. & El Hami, A. & Walha, L. & Fakhfakh, T. & Haddar, M., 2017. "Dynamic response of wind turbine gear system with uncertain-but-bounded parameters using interval analysis method," Renewable Energy, Elsevier, vol. 113(C), pages 679-687.
    12. Chuhua Jiang & Xuedao Shu & Junhua Chen & Lingjie Bao & Hao Li, 2020. "Research on Performance Evaluation of Tidal Energy Turbine under Variable Velocity," Energies, MDPI, vol. 13(23), pages 1-14, November.
    13. Si, Yulin & Liu, Xiaodong & Wang, Tao & Feng, Bo & Qian, Peng & Ma, Yong & Zhang, Dahai, 2022. "State-of-the-art review and future trends of development of tidal current energy converters in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Li, Jianlan & Zhang, Xuran & Zhou, Xing & Lu, Luyi, 2019. "Reliability assessment of wind turbine bearing based on the degradation-Hidden-Markov model," Renewable Energy, Elsevier, vol. 132(C), pages 1076-1087.
    15. He, Jiao & Jin, Xin & Xie, S.Y. & Cao, Le & Lin, Yifan & Wang, Ning, 2019. "Multi-body dynamics modeling and TMD optimization based on the improved AFSA for floating wind turbines," Renewable Energy, Elsevier, vol. 141(C), pages 305-321.
    16. Li, He & Teixeira, Angelo P. & Guedes Soares, C., 2020. "A two-stage Failure Mode and Effect Analysis of offshore wind turbines," Renewable Energy, Elsevier, vol. 162(C), pages 1438-1461.
    17. Jin, Xin & Li, Lang & Ju, Wenbin & Zhang, Zhaolong & Yang, Xiangang, 2016. "Multibody modeling of varying complexity for dynamic analysis of large-scale wind turbines," Renewable Energy, Elsevier, vol. 90(C), pages 336-351.
    18. Zhiyu Jiang & Weifei Hu & Wenbin Dong & Zhen Gao & Zhengru Ren, 2017. "Structural Reliability Analysis of Wind Turbines: A Review," Energies, MDPI, vol. 10(12), pages 1-25, December.
    19. Wang, Bohan & Deng, Ziwei & Zhang, Baocheng, 2022. "Simulation of a novel wind–wave hybrid power generation system with hydraulic transmission," Energy, Elsevier, vol. 238(PB).
    20. Yang, Wenguang & Liu, Chao & Jiang, Dongxiang, 2018. "An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring," Renewable Energy, Elsevier, vol. 127(C), pages 230-241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:194:y:2022:i:c:p:51-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.