IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i2p494-d198826.html
   My bibliography  Save this article

Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development

Author

Listed:
  • Jijian Lian

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
    School of Civil Engineering, Tianjin University, Tianjin 300350, China)

  • Ou Cai

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
    School of Civil Engineering, Tianjin University, Tianjin 300350, China
    PowerChina Beijing Engineering Corporation Limited, Beijing 100024, China)

  • Xiaofeng Dong

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
    School of Civil Engineering, Tianjin University, Tianjin 300350, China)

  • Qi Jiang

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
    School of Civil Engineering, Tianjin University, Tianjin 300350, China)

  • Yue Zhao

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China
    School of Civil Engineering, Tianjin University, Tianjin 300350, China)

Abstract

With the depletion of fossil energy, offshore wind power has become an irreplaceable energy source for most countries in the world. In recent years, offshore wind power generation has presented the gradual development trend of larger capacity, taller towers, and longer blades. The more flexible towers and blades have led to the structural operational safety of the offshore wind turbine (OWT) receiving increasing worldwide attention. From this perspective, health monitoring systems and operational safety evaluation techniques of the offshore wind turbine structure, including the monitoring system category, data acquisition and transmission, feature information extraction and identification, safety evaluation and reliability analysis, and the intelligent operation and maintenance, were systematically investigated and summarized in this paper. Furthermore, a review of the current status, advantages, disadvantages, and the future development trend of existing systems and techniques was also carried out. Particularly, the offshore wind power industry will continue to develop into deep ocean areas in the next 30 years in China. Practical and reliable health monitoring systems and safety evaluation techniques are increasingly critical for offshore wind farms. Simultaneously, they have great significance for strengthening operation management, making efficient decisions, and reducing failure risks, and are also the key link in ensuring safe energy compositions and achieving energy development targets in China. The aims of this article are to inform more scholars and experts about the status of the health monitoring and safety evaluation of the offshore wind turbine structure, and to contribute toward improving the efficiency of the corresponding systems and techniques.

Suggested Citation

  • Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:494-:d:198826
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/2/494/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/2/494/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tian, Zhigang & Jin, Tongdan & Wu, Bairong & Ding, Fangfang, 2011. "Condition based maintenance optimization for wind power generation systems under continuous monitoring," Renewable Energy, Elsevier, vol. 36(5), pages 1502-1509.
    2. Lin, Yonggang & Tu, Le & Liu, Hongwei & Li, Wei, 2016. "Fault analysis of wind turbines in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 482-490.
    3. Wymore, Mathew L. & Van Dam, Jeremy E. & Ceylan, Halil & Qiao, Daji, 2015. "A survey of health monitoring systems for wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 976-990.
    4. Maria Martinez Luengo & Athanasios Kolios, 2015. "Failure Mode Identification and End of Life Scenarios of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 8(8), pages 1-16, August.
    5. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
    6. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    7. Mahmoud El-Kafafy & Christof Devriendt & Patrick Guillaume & Jan Helsen, 2017. "Automatic Tracking of the Modal Parameters of an Offshore Wind Turbine Drivetrain System," Energies, MDPI, vol. 10(4), pages 1-15, April.
    8. Yang, Bin & Sun, Dongbai, 2013. "Testing, inspecting and monitoring technologies for wind turbine blades: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 515-526.
    9. Kilic, Gokhan & Unluturk, Mehmet S., 2015. "Testing of wind turbine towers using wireless sensor network and accelerometer," Renewable Energy, Elsevier, vol. 75(C), pages 318-325.
    10. Kim, Dong Hyawn & Lee, Sang Geun, 2015. "Reliability analysis of offshore wind turbine support structures under extreme ocean environmental loads," Renewable Energy, Elsevier, vol. 79(C), pages 161-166.
    11. Schubel, P.J. & Crossley, R.J. & Boateng, E.K.G. & Hutchinson, J.R., 2013. "Review of structural health and cure monitoring techniques for large wind turbine blades," Renewable Energy, Elsevier, vol. 51(C), pages 113-123.
    12. Bangalore, P. & Patriksson, M., 2018. "Analysis of SCADA data for early fault detection, with application to the maintenance management of wind turbines," Renewable Energy, Elsevier, vol. 115(C), pages 521-532.
    13. Ossai, Chinedu I. & Boswell, Brian & Davies, Ian J., 2016. "A Markovian approach for modelling the effects of maintenance on downtime and failure risk of wind turbine components," Renewable Energy, Elsevier, vol. 96(PA), pages 775-783.
    14. Guo, Haitao & Watson, Simon & Tavner, Peter & Xiang, Jiangping, 2009. "Reliability analysis for wind turbines with incomplete failure data collected from after the date of initial installation," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1057-1063.
    15. Rodrigues, S. & Restrepo, C. & Kontos, E. & Teixeira Pinto, R. & Bauer, P., 2015. "Trends of offshore wind projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1114-1135.
    16. Marino, Enzo & Giusti, Alessandro & Manuel, Lance, 2017. "Offshore wind turbine fatigue loads: The influence of alternative wave modeling for different turbulent and mean winds," Renewable Energy, Elsevier, vol. 102(PA), pages 157-169.
    17. Shaikh, Faisal Karim & Zeadally, Sherali, 2016. "Energy harvesting in wireless sensor networks: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1041-1054.
    18. Yang, Wenxian & Court, Richard & Jiang, Jiesheng, 2013. "Wind turbine condition monitoring by the approach of SCADA data analysis," Renewable Energy, Elsevier, vol. 53(C), pages 365-376.
    19. Willis, D.J. & Niezrecki, C. & Kuchma, D. & Hines, E. & Arwade, S.R. & Barthelmie, R.J. & DiPaola, M. & Drane, P.J. & Hansen, C.J. & Inalpolat, M. & Mack, J.H. & Myers, A.T. & Rotea, M., 2018. "Wind energy research: State-of-the-art and future research directions," Renewable Energy, Elsevier, vol. 125(C), pages 133-154.
    20. Perveen, Rehana & Kishor, Nand & Mohanty, Soumya R., 2014. "Off-shore wind farm development: Present status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 780-792.
    21. Rezaei, Mohammad M. & Behzad, Mehdi & Moradi, Hamed & Haddadpour, Hassan, 2016. "Modal-based damage identification for the nonlinear model of modern wind turbine blade," Renewable Energy, Elsevier, vol. 94(C), pages 391-409.
    22. Sinha, Y. & Steel, J.A., 2015. "A progressive study into offshore wind farm maintenance optimisation using risk based failure analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 735-742.
    23. Sun, Peng & Li, Jian & Wang, Caisheng & Lei, Xiao, 2016. "A generalized model for wind turbine anomaly identification based on SCADA data," Applied Energy, Elsevier, vol. 168(C), pages 550-567.
    24. Martinez-Luengo, Maria & Kolios, Athanasios & Wang, Lin, 2016. "Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 91-105.
    25. Ozbek, Muammer & Rixen, Daniel J. & Erne, Oliver & Sanow, Gunter, 2010. "Feasibility of monitoring large wind turbines using photogrammetry," Energy, Elsevier, vol. 35(12), pages 4802-4811.
    26. Song, Zhe & Zhang, Zijun & Jiang, Yu & Zhu, Jin, 2018. "Wind turbine health state monitoring based on a Bayesian data-driven approach," Renewable Energy, Elsevier, vol. 125(C), pages 172-181.
    27. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    28. Liu, Xiaofeng & Bo, Lin & Luo, Hongling, 2016. "Dynamical measurement system for wind turbine fatigue load," Renewable Energy, Elsevier, vol. 86(C), pages 909-921.
    29. Koukoura, Christina & Natarajan, Anand & Vesth, Allan, 2015. "Identification of support structure damping of a full scale offshore wind turbine in normal operation," Renewable Energy, Elsevier, vol. 81(C), pages 882-895.
    30. Liu, Wenyi & Tang, Baoping & Jiang, Yonghua, 2010. "Status and problems of wind turbine structural health monitoring techniques in China," Renewable Energy, Elsevier, vol. 35(7), pages 1414-1418.
    31. Peng Guo & David Infield, 2012. "Wind Turbine Tower Vibration Modeling and Monitoring by the Nonlinear State Estimation Technique (NSET)," Energies, MDPI, vol. 5(12), pages 1-15, December.
    32. Kim, Soo-Hyun & Shin, Hyung-Ki & Joo, Young-Chul & Kim, Keon-Hoon, 2015. "A study of the wake effects on the wind characteristics and fatigue loads for the turbines in a wind farm," Renewable Energy, Elsevier, vol. 74(C), pages 536-543.
    33. Kusiak, Andrew & Zhang, Zijun & Verma, Anoop, 2013. "Prediction, operations, and condition monitoring in wind energy," Energy, Elsevier, vol. 60(C), pages 1-12.
    34. Zhang, Mingming & Tan, Bin & Xu, Jianzhong, 2016. "Smart fatigue load control on the large-scale wind turbine blades using different sensing signals," Renewable Energy, Elsevier, vol. 87(P1), pages 111-119.
    35. García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
    36. Hameed, Z. & Ahn, S.H. & Cho, Y.M., 2010. "Practical aspects of a condition monitoring system for a wind turbine with emphasis on its design, system architecture, testing and installation," Renewable Energy, Elsevier, vol. 35(5), pages 879-894.
    37. Romero, Antonio & Soua, Slim & Gan, Tat-Hean & Wang, Bin, 2018. "Condition monitoring of a wind turbine drive train based on its power dependant vibrations," Renewable Energy, Elsevier, vol. 123(C), pages 817-827.
    38. Zheng, Tengfei & Qiang, Maoshan & Chen, Wenchao & Xia, Bingqing & Wang, Jianing, 2016. "An externality evaluation model for hydropower projects: A case study of the Three Gorges Project," Energy, Elsevier, vol. 108(C), pages 74-85.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jijian Lian & Huan Zhou & Xiaofeng Dong, 2022. "A Theoretical Approach for Resonance Analysis of Wind Turbines under 1P/3P Loads," Energies, MDPI, vol. 15(16), pages 1-15, August.
    2. Jijian Lian & Qi Jiang & Xiaofeng Dong & Yue Zhao & Hao Zhao, 2019. "Dynamic Impedance of the Wide-Shallow Bucket Foundation for Offshore Wind Turbine Using Coupled Finite–Infinite Element Method," Energies, MDPI, vol. 12(22), pages 1-28, November.
    3. Zheng Zhou & Kaizhi Dong & Ziwei Fang & Yang Liu, 2022. "A Two-Stage Approach for Damage Diagnosis of Structures Based on a Fully Distributed Strain Mode under Multigain Feedback Control," Sustainability, MDPI, vol. 14(16), pages 1-25, August.
    4. Yeter, B. & Garbatov, Y. & Guedes Soares, C., 2022. "Life-extension classification of offshore wind assets using unsupervised machine learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    6. Gürdal Ertek & Lakshmi Kailas, 2021. "Analyzing a Decade of Wind Turbine Accident News with Topic Modeling," Sustainability, MDPI, vol. 13(22), pages 1-34, November.
    7. Xiaoming Lei & Limin Sun & Ye Xia & Tiantao He, 2020. "Vibration-Based Seismic Damage States Evaluation for Regional Concrete Beam Bridges Using Random Forest Method," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    8. Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Wang, Yangwei & Lin, Jiahuan & Zhang, Jun, 2022. "Investigation of a new analytical wake prediction method for offshore floating wind turbines considering an accurate incoming wind flow," Renewable Energy, Elsevier, vol. 185(C), pages 827-849.
    10. Songjune Lee & Seungjin Kang & Gwang-Se Lee, 2023. "Predictions for Bending Strain at the Tower Bottom of Offshore Wind Turbine Based on the LSTM Model," Energies, MDPI, vol. 16(13), pages 1-18, June.
    11. Rybak, Aurelia & Rybak, Aleksandra & Kolev, Spas D., 2024. "Development of wind energy and access to REE. The case of Poland," Resources Policy, Elsevier, vol. 90(C).
    12. Sungmok Hwang & Cheol Yoo, 2021. "Health Monitoring and Diagnosis System for a Small H-Type Darrieus Vertical-Axis Wind Turbine," Energies, MDPI, vol. 14(21), pages 1-18, November.
    13. Liu, Y. & Hajj, M. & Bao, Y., 2022. "Review of robot-based damage assessment for offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Shen Xie & Xinggang Wang & Mi Zhou & Deyong Wang & Weiping Peng, 2022. "Penetration Behavior of the Footing of Jack-Up Vessel of OWTs in Thin Stiff over NC Clay," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    15. Jia, Yaya & Huang, Jiachen & Liu, Qingkuan & Zhao, Zonghan & Dong, Menghui, 2024. "The wind tunnel test research on the aerodynamic stability of wind turbine airfoils," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    2. Kaewniam, Panida & Cao, Maosen & Alkayem, Nizar Faisal & Li, Dayang & Manoach, Emil, 2022. "Recent advances in damage detection of wind turbine blades: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. de Azevedo, Henrique Dias Machado & Araújo, Alex Maurício & Bouchonneau, Nadège, 2016. "A review of wind turbine bearing condition monitoring: State of the art and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 368-379.
    4. Li, Jianlan & Zhang, Xuran & Zhou, Xing & Lu, Luyi, 2019. "Reliability assessment of wind turbine bearing based on the degradation-Hidden-Markov model," Renewable Energy, Elsevier, vol. 132(C), pages 1076-1087.
    5. Yuri Merizalde & Luis Hernández-Callejo & Oscar Duque-Perez & Víctor Alonso-Gómez, 2019. "Maintenance Models Applied to Wind Turbines. A Comprehensive Overview," Energies, MDPI, vol. 12(2), pages 1-41, January.
    6. Giovanni Rinaldi & Philipp R. Thies & Lars Johanning, 2021. "Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    7. Miguel A. Rodríguez-López & Luis M. López-González & Luis M. López-Ochoa & Jesús Las-Heras-Casas, 2018. "Methodology for Detecting Malfunctions and Evaluating the Maintenance Effectiveness in Wind Turbine Generator Bearings Using Generic versus Specific Models from SCADA Data," Energies, MDPI, vol. 11(4), pages 1-22, March.
    8. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    9. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
    10. Md Liton Hossain & Ahmed Abu-Siada & S. M. Muyeen, 2018. "Methods for Advanced Wind Turbine Condition Monitoring and Early Diagnosis: A Literature Review," Energies, MDPI, vol. 11(5), pages 1-14, May.
    11. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    12. Yang, Chunzhen & Liu, Jingquan & Zeng, Yuyun & Xie, Guangyao, 2019. "Real-time condition monitoring and fault detection of components based on machine-learning reconstruction model," Renewable Energy, Elsevier, vol. 133(C), pages 433-441.
    13. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    14. Zhou, H.F. & Zheng, J.F. & Xie, Z.L. & Lu, L.J. & Ni, Y.Q. & Ko, J.M., 2017. "Temperature effects on vision measurement system in long-term continuous monitoring of displacement," Renewable Energy, Elsevier, vol. 114(PB), pages 968-983.
    15. Yang, Zhimin & Chai, Yi, 2016. "A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 345-359.
    16. Jiménez, Alfredo Arcos & García Márquez, Fausto Pedro & Moraleda, Victoria Borja & Gómez Muñoz, Carlos Quiterio, 2019. "Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis," Renewable Energy, Elsevier, vol. 132(C), pages 1034-1048.
    17. Koukoura, Sofia & Scheu, Matti Niclas & Kolios, Athanasios, 2021. "Influence of extended potential-to-functional failure intervals through condition monitoring systems on offshore wind turbine availability," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    18. Li, He & Teixeira, Angelo P. & Guedes Soares, C., 2020. "A two-stage Failure Mode and Effect Analysis of offshore wind turbines," Renewable Energy, Elsevier, vol. 162(C), pages 1438-1461.
    19. Martinez-Luengo, Maria & Kolios, Athanasios & Wang, Lin, 2016. "Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 91-105.
    20. Masoud Asgarpour & John Dalsgaard Sørensen, 2018. "Bayesian Based Diagnostic Model for Condition Based Maintenance of Offshore Wind Farms," Energies, MDPI, vol. 11(2), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:494-:d:198826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.