IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v219y2022ics0951832021007079.html
   My bibliography  Save this article

Life-extension classification of offshore wind assets using unsupervised machine learning

Author

Listed:
  • Yeter, B.
  • Garbatov, Y.
  • Guedes Soares, C.

Abstract

The objective of the present study is to conduct a techno-economic life-extension analysis for fixed offshore wind turbines for the purpose of classification and certification. The early installed offshore wind turbines are approaching the end of their design service lives. The life extension of these structures is under serious consideration as the support structures are still in a condition for further use. Hence, it is technically possible and economically beneficial to investigate roadmaps for potential life-extension decisions. The methodology developed to analyse the life-extension projects merges a structural integrity assessment of a monopile structure with a corrosion-induced crack development with an economic analysis of the return on assets accounting for the likelihood of obtaining the estimated return. The methodology commences with preprocessing the structural health monitoring data using a Gaussian kernel for denoising, followed by a time-domain crack growth analysis accounting for retardation performed on a cycle-by-cycle basis. The corrosion-related failure mechanisms are growing concerns for currently operating monopile offshore wind turbines. The present study introduces a novel nonlinear corrosion model to address the emergent issue, which is developed considering the spatial and temporal changes in the environmental and operational parameters and the reinforcing effect of fracture on the corrosion. The failure assessment diagram identifies the threshold based on the maintenance cost calculated with a confidence level. The economic analysis combines revenue estimates and operational expenditures, considering the life-extension duration and appropriate discount rate. The results of the life-extension assessment, presented through a risk-return diagram, are used to classify the life-extension projects using unsupervised machine learning k-means clustering algorithm.

Suggested Citation

  • Yeter, B. & Garbatov, Y. & Guedes Soares, C., 2022. "Life-extension classification of offshore wind assets using unsupervised machine learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
  • Handle: RePEc:eee:reensy:v:219:y:2022:i:c:s0951832021007079
    DOI: 10.1016/j.ress.2021.108229
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021007079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    2. Houda Ghamlouch & Mitra Fouladirad & Antoine Grall, 2019. "The use of real option in condition-based maintenance scheduling for wind turbines with production and deterioration uncertainties," Post-Print hal-02365402, HAL.
    3. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    4. Ghamlouch, Houda & Fouladirad, Mitra & Grall, Antoine, 2019. "The use of real option in condition-based maintenance scheduling for wind turbines with production and deterioration uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 614-623.
    5. Levitt, Andrew C. & Kempton, Willett & Smith, Aaron P. & Musial, Walt & Firestone, Jeremy, 2011. "Pricing offshore wind power," Energy Policy, Elsevier, vol. 39(10), pages 6408-6421, October.
    6. Reder, Maik & Yürüşen, Nurseda Y. & Melero, Julio J., 2018. "Data-driven learning framework for associating weather conditions and wind turbine failures," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 554-569.
    7. Adedipe, Oyewole & Brennan, Feargal & Kolios, Athanasios, 2016. "Review of corrosion fatigue in offshore structures: Present status and challenges in the offshore wind sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 141-154.
    8. Rubert, T. & McMillan, D. & Niewczas, P., 2018. "A decision support tool to assist with lifetime extension of wind turbines," Renewable Energy, Elsevier, vol. 120(C), pages 423-433.
    9. Horn, Jan-Tore & Leira, Bernt J., 2019. "Fatigue reliability assessment of offshore wind turbines with stochastic availability," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    10. Shittu, Abdulhakim Adeoye & Mehmanparast, Ali & Hart, Phil & Kolios, Athanasios, 2021. "Comparative study between S-N and fracture mechanics approach on reliability assessment of offshore wind turbine jacket foundations," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Scheu, Matti Niclas & Kolios, Athanasios & Fischer, Tim & Brennan, Feargal, 2017. "Influence of statistical uncertainty of component reliability estimations on offshore wind farm availability," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 28-39.
    12. Shafiee, Mahmood & Sørensen, John Dalsgaard, 2019. "Maintenance optimization and inspection planning of wind energy assets: Models, methods and strategies," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    13. Zhang, Nailong & Si, Wujun, 2020. "Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    14. Yürüşen, Nurseda Y. & Rowley, Paul N. & Watson, Simon J. & Melero, Julio J., 2020. "Automated wind turbine maintenance scheduling," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    15. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
    16. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    17. Martinez-Luengo, Maria & Kolios, Athanasios & Wang, Lin, 2016. "Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 91-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saleh, Ali & Chiachío, Manuel & Salas, Juan Fernández & Kolios, Athanasios, 2023. "Self-adaptive optimized maintenance of offshore wind turbines by intelligent Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Cao, Bohan & Yin, Qishuai & Guo, Yingying & Yang, Jin & Zhang, Laibin & Wang, Zhenquan & Tyagi, Mayank & Sun, Ting & Zhou, Xu, 2023. "Field data analysis and risk assessment of shallow gas hazards based on neural networks during industrial deep-water drilling," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Giannakeas, Ilias N. & Mazaheri, Fatemeh & Bacarreza, Omar & Khodaei, Zahra Sharif & Aliabadi, Ferri M.H., 2023. "Probabilistic residual strength assessment of smart composite aircraft panels using guided waves," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    2. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    3. Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Zhang, Chen & Hu, Di & Yang, Tao, 2022. "Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Yeter, B. & Garbatov, Y. & Guedes Soares, C., 2020. "Risk-based maintenance planning of offshore wind turbine farms," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    7. Li, He & Teixeira, Angelo P. & Guedes Soares, C., 2020. "A two-stage Failure Mode and Effect Analysis of offshore wind turbines," Renewable Energy, Elsevier, vol. 162(C), pages 1438-1461.
    8. Saleh, Ali & Chiachío, Manuel & Salas, Juan Fernández & Kolios, Athanasios, 2023. "Self-adaptive optimized maintenance of offshore wind turbines by intelligent Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    9. Ahmed Raza & Vladimir Ulansky, 2019. "Optimal Preventive Maintenance of Wind Turbine Components with Imperfect Continuous Condition Monitoring," Energies, MDPI, vol. 12(19), pages 1-24, October.
    10. Gürdal Ertek & Lakshmi Kailas, 2021. "Analyzing a Decade of Wind Turbine Accident News with Topic Modeling," Sustainability, MDPI, vol. 13(22), pages 1-34, November.
    11. Thapa, Mishal & Missoum, Samy, 2022. "Uncertainty quantification and global sensitivity analysis of composite wind turbine blades," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    12. Shittu, Abdulhakim Adeoye & Mehmanparast, Ali & Hart, Phil & Kolios, Athanasios, 2021. "Comparative study between S-N and fracture mechanics approach on reliability assessment of offshore wind turbine jacket foundations," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    13. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    14. Rubert, T. & Zorzi, G. & Fusiek, G. & Niewczas, P. & McMillan, D. & McAlorum, J. & Perry, M., 2019. "Wind turbine lifetime extension decision-making based on structural health monitoring," Renewable Energy, Elsevier, vol. 143(C), pages 611-621.
    15. Francesco Ferri & Simon Ambühl & Boris Fischer & Jens Peter Kofoed, 2014. "Balancing Power Output and Structural Fatigue of Wave Energy Converters by Means of Control Strategies," Energies, MDPI, vol. 7(4), pages 1-28, April.
    16. Luis M. Abadie & Nestor Goicoechea, 2021. "Old Wind Farm Life Extension vs. Full Repowering: A Review of Economic Issues and a Stochastic Application for Spain," Energies, MDPI, vol. 14(12), pages 1-24, June.
    17. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    18. Alan Turnbull & Conor McKinnon & James Carrol & Alasdair McDonald, 2022. "On the Development of Offshore Wind Turbine Technology: An Assessment of Reliability Rates and Fault Detection Methods in a Changing Market," Energies, MDPI, vol. 15(9), pages 1-20, April.
    19. Kitzing, Lena, 2014. "Risk implications of renewable support instruments: Comparative analysis of feed-in tariffs and premiums using a mean–variance approach," Energy, Elsevier, vol. 64(C), pages 495-505.
    20. Khakifirooz, Marzieh & Fathi, Michel & Lee, I-Chen & Tseng, Sheng-Tsaing, 2023. "Neural ordinary differential equation for sequential optimal design of fatigue test under accelerated life test analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:219:y:2022:i:c:s0951832021007079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.