Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Amirat, Y. & Benbouzid, M.E.H. & Al-Ahmar, E. & Bensaker, B. & Turri, S., 2009. "A brief status on condition monitoring and fault diagnosis in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2629-2636, December.
- Becky Corley & Sofia Koukoura & James Carroll & Alasdair McDonald, 2021. "Combination of Thermal Modelling and Machine Learning Approaches for Fault Detection in Wind Turbine Gearboxes," Energies, MDPI, vol. 14(5), pages 1-14, March.
- Jichuan Kang & Zihao Wang & C. Guedes Soares, 2020. "Condition-Based Maintenance for Offshore Wind Turbines Based on Support Vector Machine," Energies, MDPI, vol. 13(14), pages 1-17, July.
- Dong, Xinghui & Gao, Di & Li, Jia & Jincao, Zhang & Zheng, Kai, 2020. "Blades icing identification model of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 162(C), pages 575-586.
- Qian, Peng & Zhang, Dahai & Tian, Xiange & Si, Yulin & Li, Liangbi, 2019. "A novel wind turbine condition monitoring method based on cloud computing," Renewable Energy, Elsevier, vol. 135(C), pages 390-398.
- Pang, Yanhua & He, Qun & Jiang, Guoqian & Xie, Ping, 2020. "Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 161(C), pages 510-524.
- Wang, Yifei & Ma, Xiandong & Joyce, Malcolm J., 2016. "Reducing sensor complexity for monitoring wind turbine performance using principal component analysis," Renewable Energy, Elsevier, vol. 97(C), pages 444-456.
- Md Liton Hossain & Ahmed Abu-Siada & S. M. Muyeen, 2018. "Methods for Advanced Wind Turbine Condition Monitoring and Early Diagnosis: A Literature Review," Energies, MDPI, vol. 11(5), pages 1-14, May.
- Zappalá, D. & Sarma, N. & Djurović, S. & Crabtree, C.J. & Mohammad, A. & Tavner, P.J., 2019. "Electrical & mechanical diagnostic indicators of wind turbine induction generator rotor faults," Renewable Energy, Elsevier, vol. 131(C), pages 14-24.
- Tarek Berghout & Mohamed Benbouzid & Leïla-Hayet Mouss, 2021. "Leveraging Label Information in a Knowledge-Driven Approach for Rolling-Element Bearings Remaining Useful Life Prediction," Energies, MDPI, vol. 14(8), pages 1-18, April.
- Chen, Bin & Xie, Lei & Li, Yongzhan & Gao, Baocheng, 2020. "Acoustical damage detection of wind turbine yaw system using Bayesian network," Renewable Energy, Elsevier, vol. 160(C), pages 1364-1372.
- Kong, Yun & Wang, Tianyang & Feng, Zhipeng & Chu, Fulei, 2020. "Discriminative dictionary learning based sparse representation classification for intelligent fault identification of planet bearings in wind turbine," Renewable Energy, Elsevier, vol. 152(C), pages 754-769.
- Houda Ghamlouch & Mitra Fouladirad & Antoine Grall, 2019. "The use of real option in condition-based maintenance scheduling for wind turbines with production and deterioration uncertainties," Post-Print hal-02365402, HAL.
- Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
- Hameed, Z. & Vatn, J. & Heggset, J., 2011. "Challenges in the reliability and maintainability data collection for offshore wind turbines," Renewable Energy, Elsevier, vol. 36(8), pages 2154-2165.
- Yürüşen, Nurseda Y. & Rowley, Paul N. & Watson, Simon J. & Melero, Julio J., 2020. "Automated wind turbine maintenance scheduling," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
- García Márquez, Fausto Pedro & Peco Chacón, Ana María, 2020. "A review of non-destructive testing on wind turbines blades," Renewable Energy, Elsevier, vol. 161(C), pages 998-1010.
- Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
- Ren, He & Liu, Wenyi & Shan, Mengchen & Wang, Xin & Wang, Zhengfeng, 2021. "A novel wind turbine health condition monitoring method based on composite variational mode entropy and weighted distribution adaptation," Renewable Energy, Elsevier, vol. 168(C), pages 972-980.
- Chen, Hansi & Liu, Hang & Chu, Xuening & Liu, Qingxiu & Xue, Deyi, 2021. "Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network," Renewable Energy, Elsevier, vol. 172(C), pages 829-840.
- Ghamlouch, Houda & Fouladirad, Mitra & Grall, Antoine, 2019. "The use of real option in condition-based maintenance scheduling for wind turbines with production and deterioration uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 614-623.
- Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
- Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
- Zhou, Yifan & Miao, Jindan & Yan, Bin & Zhang, Zhisheng, 2020. "Bio-objective long-term maintenance scheduling for wind turbines in multiple wind farms," Renewable Energy, Elsevier, vol. 160(C), pages 1136-1147.
- Shafiee, Mahmood & Finkelstein, Maxim & Bérenguer, Christophe, 2015. "An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 463-471.
- Zhu, Xiaoyan & Chen, Zhiqiang & Borgonovo, Emanuele, 2021. "Remaining-useful-lifetime and system-remaining-profit based importance measures for decisions on preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Chandrasekhar, Kartik & Stevanovic, Nevena & Cross, Elizabeth J. & Dervilis, Nikolaos & Worden, Keith, 2021. "Damage detection in operational wind turbine blades using a new approach based on machine learning," Renewable Energy, Elsevier, vol. 168(C), pages 1249-1264.
- Yang, Wenxian & Court, Richard & Jiang, Jiesheng, 2013. "Wind turbine condition monitoring by the approach of SCADA data analysis," Renewable Energy, Elsevier, vol. 53(C), pages 365-376.
- Reder, Maik & Yürüşen, Nurseda Y. & Melero, Julio J., 2018. "Data-driven learning framework for associating weather conditions and wind turbine failures," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 554-569.
- Chang, Yuanhong & Chen, Jinglong & Qu, Cheng & Pan, Tongyang, 2020. "Intelligent fault diagnosis of Wind Turbines via a Deep Learning Network Using Parallel Convolution Layers with Multi-Scale Kernels," Renewable Energy, Elsevier, vol. 153(C), pages 205-213.
- Yang, Xiyun & Zhang, Yanfeng & Lv, Wei & Wang, Dong, 2021. "Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier," Renewable Energy, Elsevier, vol. 163(C), pages 386-397.
- Heinermann, Justin & Kramer, Oliver, 2016. "Machine learning ensembles for wind power prediction," Renewable Energy, Elsevier, vol. 89(C), pages 671-679.
- Estefania Artigao & Sofia Koukoura & Andrés Honrubia-Escribano & James Carroll & Alasdair McDonald & Emilio Gómez-Lázaro, 2018. "Current Signature and Vibration Analyses to Diagnose an In-Service Wind Turbine Drive Train," Energies, MDPI, vol. 11(4), pages 1-18, April.
- Soua, Slim & Van Lieshout, Paul & Perera, Asanka & Gan, Tat-Hean & Bridge, Bryan, 2013. "Determination of the combined vibrational and acoustic emission signature of a wind turbine gearbox and generator shaft in service as a pre-requisite for effective condition monitoring," Renewable Energy, Elsevier, vol. 51(C), pages 175-181.
- Jiménez, Alfredo Arcos & García Márquez, Fausto Pedro & Moraleda, Victoria Borja & Gómez Muñoz, Carlos Quiterio, 2019. "Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis," Renewable Energy, Elsevier, vol. 132(C), pages 1034-1048.
- Li, Yanting & Jiang, Wenbo & Zhang, Guangyao & Shu, Lianjie, 2021. "Wind turbine fault diagnosis based on transfer learning and convolutional autoencoder with small-scale data," Renewable Energy, Elsevier, vol. 171(C), pages 103-115.
- Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
- García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
- Wenna Zhang & Xiandong Ma, 2016. "Simultaneous Fault Detection and Sensor Selection for Condition Monitoring of Wind Turbines," Energies, MDPI, vol. 9(4), pages 1-15, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Berghout, Tarek & Benbouzid, Mohamed & Muyeen, S.M., 2022. "Machine learning for cybersecurity in smart grids: A comprehensive review-based study on methods, solutions, and prospects," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
- Zhan, Jun & Wu, Chengkun & Yang, Canqun & Miao, Qiucheng & Wang, Shilin & Ma, Xiandong, 2022. "Condition monitoring of wind turbines based on spatial-temporal feature aggregation networks," Renewable Energy, Elsevier, vol. 200(C), pages 751-766.
- Usama Aziz & Sylvie Charbonnier & Christophe Berenguer & Alexis Lebranchu & Frederic Prevost, 2022. "A Multi-Turbine Approach for Improving Performance of Wind Turbine Power-Based Fault Detection Methods," Energies, MDPI, vol. 15(8), pages 1-21, April.
- Tarek Berghout & Mohamed Benbouzid & Toufik Bentrcia & Xiandong Ma & Siniša Djurović & Leïla-Hayet Mouss, 2021. "Machine Learning-Based Condition Monitoring for PV Systems: State of the Art and Future Prospects," Energies, MDPI, vol. 14(19), pages 1-24, October.
- Gang Li & Weidong Zhu, 2022. "A Review on Up-to-Date Gearbox Technologies and Maintenance of Tidal Current Energy Converters," Energies, MDPI, vol. 15(23), pages 1-24, December.
- Dayo-Olupona, Oluwatobi & Genc, Bekir & Celik, Turgay & Bada, Samson, 2023. "Adoptable approaches to predictive maintenance in mining industry: An overview," Resources Policy, Elsevier, vol. 86(PA).
- Małgorzata Jastrzębska, 2022. "Installation’s Conception in the Field of Renewable Energy Sources for the Needs of the Silesian Botanical Garden," Energies, MDPI, vol. 15(18), pages 1-28, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
- Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
- Li, He & Teixeira, Angelo P. & Guedes Soares, C., 2020. "A two-stage Failure Mode and Effect Analysis of offshore wind turbines," Renewable Energy, Elsevier, vol. 162(C), pages 1438-1461.
- Oh, So Young & Joung, Chanwoo & Lee, Seonghwan & Shim, Yoon-Bo & Lee, Dahun & Cho, Gyu-Eun & Jang, Juhyeong & Lee, In Yong & Park, Young-Bin, 2024. "Condition-based maintenance of wind turbine structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
- Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.
- Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
- Zemali, Zakaria & Cherroun, Lakhmissi & Hadroug, Nadji & Hafaifa, Ahmed & Iratni, Abdelhamid & Alshammari, Obaid S. & Colak, Ilhami, 2023. "Robust intelligent fault diagnosis strategy using Kalman observers and neuro-fuzzy systems for a wind turbine benchmark," Renewable Energy, Elsevier, vol. 205(C), pages 873-898.
- Yeter, B. & Garbatov, Y. & Guedes Soares, C., 2022. "Life-extension classification of offshore wind assets using unsupervised machine learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
- Zhang, Chen & Hu, Di & Yang, Tao, 2022. "Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Ahmed Raza & Vladimir Ulansky, 2019. "Optimal Preventive Maintenance of Wind Turbine Components with Imperfect Continuous Condition Monitoring," Energies, MDPI, vol. 12(19), pages 1-24, October.
- Pliego Marugán, Alberto & Peco Chacón, Ana MarÃa & GarcÃa Márquez, Fausto Pedro, 2019. "Reliability analysis of detecting false alarms that employ neural networks: A real case study on wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
- Giovanni Rinaldi & Philipp R. Thies & Lars Johanning, 2021. "Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
- Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
- Ye, Feng & Ezzat, Ahmed Aziz, 2024. "Icing detection and prediction for wind turbines using multivariate sensor data and machine learning," Renewable Energy, Elsevier, vol. 231(C).
- Alessandro Murgia & Robbert Verbeke & Elena Tsiporkova & Ludovico Terzi & Davide Astolfi, 2023. "Discussion on the Suitability of SCADA-Based Condition Monitoring for Wind Turbine Fault Diagnosis through Temperature Data Analysis," Energies, MDPI, vol. 16(2), pages 1-20, January.
- Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Alan Turnbull & Conor McKinnon & James Carrol & Alasdair McDonald, 2022. "On the Development of Offshore Wind Turbine Technology: An Assessment of Reliability Rates and Fault Detection Methods in a Changing Market," Energies, MDPI, vol. 15(9), pages 1-20, April.
- Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
- Dao, Phong B., 2022. "Condition monitoring and fault diagnosis of wind turbines based on structural break detection in SCADA data," Renewable Energy, Elsevier, vol. 185(C), pages 641-654.
- Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Song, Chaosheng & Chen, Dingliang & Zheng, Jie, 2022. "Fault detection of offshore wind turbine gearboxes based on deep adaptive networks via considering Spatio-temporal fusion," Renewable Energy, Elsevier, vol. 200(C), pages 1023-1036.
More about this item
Keywords
wind turbines; condition monitoring; diagnosis; prognosis; machine learning; data mining; health management; operations and maintenance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5967-:d:639498. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.