IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2792-d791286.html
   My bibliography  Save this article

Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection

Author

Listed:
  • Camila Correa-Jullian

    (Garrick Institute for the Risk Sciences, University of California, Los Angeles, CA 90095, USA)

  • Sergio Cofre-Martel

    (Garrick Institute for the Risk Sciences, University of California, Los Angeles, CA 90095, USA)

  • Gabriel San Martin

    (Garrick Institute for the Risk Sciences, University of California, Los Angeles, CA 90095, USA)

  • Enrique Lopez Droguett

    (Garrick Institute for the Risk Sciences, University of California, Los Angeles, CA 90095, USA
    Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA)

  • Gustavo de Novaes Pires Leite

    (Federal Institute of Science, Education and Technology Pernambuco (IFPE), Recife 50740-540, PE, Brazil
    Center for Renewable Energy from the Federal University of Pernambuco (CER-UFPE), Recife 50740-540, PE, Brazil)

  • Alexandre Costa

    (Center for Renewable Energy from the Federal University of Pernambuco (CER-UFPE), Recife 50740-540, PE, Brazil)

Abstract

Driven by the development of machine learning (ML) and deep learning techniques, prognostics and health management (PHM) has become a key aspect of reliability engineering research. With the recent rise in popularity of quantum computing algorithms and public availability of first-generation quantum hardware, it is of interest to assess their potential for efficiently handling large quantities of operational data for PHM purposes. This paper addresses the application of quantum kernel classification models for fault detection in wind turbine systems (WTSs). The analyzed data correspond to low-frequency SCADA sensor measurements and recorded SCADA alarm logs, focused on the early detection of pitch fault failures. This work aims to explore potential advantages of quantum kernel methods, such as quantum support vector machines (Q-SVMs), over traditional ML approaches and compare principal component analysis (PCA) and autoencoders (AE) as feature reduction tools. Results show that the proposed quantum approach is comparable to conventional ML models in terms of performance and can outperform traditional models (random forest, k-nearest neighbors) for the selected reduced dimensionality of 19 features for both PCA and AE. The overall highest mean accuracies obtained are 0.945 for Gaussian SVM and 0.925 for Q-SVM models.

Suggested Citation

  • Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2792-:d:791286
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesc Pozo & Yolanda Vidal & Josep M. Serrahima, 2016. "On Real-Time Fault Detection in Wind Turbines: Sensor Selection Algorithm and Detection Time Reduction Analysis," Energies, MDPI, vol. 9(7), pages 1-22, July.
    2. Pere Marti-Puig & Alejandro Blanco-M & Juan José Cárdenas & Jordi Cusidó & Jordi Solé-Casals, 2019. "Feature Selection Algorithms for Wind Turbine Failure Prediction," Energies, MDPI, vol. 12(3), pages 1-18, January.
    3. Wu, Yueqi & Ma, Xiandong, 2022. "A hybrid LSTM-KLD approach to condition monitoring of operational wind turbines," Renewable Energy, Elsevier, vol. 181(C), pages 554-566.
    4. Cristian Velandia-Cardenas & Yolanda Vidal & Francesc Pozo, 2021. "Wind Turbine Fault Detection Using Highly Imbalanced Real SCADA Data," Energies, MDPI, vol. 14(6), pages 1-26, March.
    5. Conor McKinnon & James Carroll & Alasdair McDonald & Sofia Koukoura & Charlie Plumley, 2021. "Investigation of Isolation Forest for Wind Turbine Pitch System Condition Monitoring Using SCADA Data," Energies, MDPI, vol. 14(20), pages 1-20, October.
    6. Md Liton Hossain & Ahmed Abu-Siada & S. M. Muyeen, 2018. "Methods for Advanced Wind Turbine Condition Monitoring and Early Diagnosis: A Literature Review," Energies, MDPI, vol. 11(5), pages 1-14, May.
    7. Qiu, Yingning & Feng, Yanhui & Infield, David, 2020. "Fault diagnosis of wind turbine with SCADA alarms based multidimensional information processing method," Renewable Energy, Elsevier, vol. 145(C), pages 1923-1931.
    8. Yingying Zhao & Dongsheng Li & Ao Dong & Dahai Kang & Qin Lv & Li Shang, 2017. "Fault Prediction and Diagnosis of Wind Turbine Generators Using SCADA Data," Energies, MDPI, vol. 10(8), pages 1-17, August.
    9. Kevin Leahy & Colm Gallagher & Peter O’Donovan & Ken Bruton & Dominic T. J. O’Sullivan, 2018. "A Robust Prescriptive Framework and Performance Metric for Diagnosing and Predicting Wind Turbine Faults Based on SCADA and Alarms Data with Case Study," Energies, MDPI, vol. 11(7), pages 1-21, July.
    10. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    11. Chen, Hansi & Liu, Hang & Chu, Xuening & Liu, Qingxiu & Xue, Deyi, 2021. "Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network," Renewable Energy, Elsevier, vol. 172(C), pages 829-840.
    12. Marvuglia, Antonino & Messineo, Antonio, 2012. "Monitoring of wind farms’ power curves using machine learning techniques," Applied Energy, Elsevier, vol. 98(C), pages 574-583.
    13. Correa-Jullian, Camila & Cardemil, José Miguel & López Droguett, Enrique & Behzad, Masoud, 2020. "Assessment of Deep Learning techniques for Prognosis of solar thermal systems," Renewable Energy, Elsevier, vol. 145(C), pages 2178-2191.
    14. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    15. Cho, Seongpil & Choi, Minjoo & Gao, Zhen & Moan, Torgeir, 2021. "Fault detection and diagnosis of a blade pitch system in a floating wind turbine based on Kalman filters and artificial neural networks," Renewable Energy, Elsevier, vol. 169(C), pages 1-13.
    16. Cho, Seongpil & Gao, Zhen & Moan, Torgeir, 2018. "Model-based fault detection, fault isolation and fault-tolerant control of a blade pitch system in floating wind turbines," Renewable Energy, Elsevier, vol. 120(C), pages 306-321.
    17. Francesc Pozo & Yolanda Vidal, 2015. "Wind Turbine Fault Detection through Principal Component Analysis and Statistical Hypothesis Testing," Energies, MDPI, vol. 9(1), pages 1-20, December.
    18. Kevin Leahy & Colm Gallagher & Peter O’Donovan & Dominic T. J. O’Sullivan, 2019. "Issues with Data Quality for Wind Turbine Condition Monitoring and Reliability Analyses," Energies, MDPI, vol. 12(2), pages 1-22, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang Gao & Guojian Wu, 2023. "Application of Quantum Computing in Power Systems," Energies, MDPI, vol. 16(5), pages 1-3, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    2. Urmeneta, Jon & Izquierdo, Juan & Leturiondo, Urko, 2023. "A methodology for performance assessment at system level—Identification of operating regimes and anomaly detection in wind turbines," Renewable Energy, Elsevier, vol. 205(C), pages 281-292.
    3. Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
    4. Zhan, Jun & Wu, Chengkun & Yang, Canqun & Miao, Qiucheng & Wang, Shilin & Ma, Xiandong, 2022. "Condition monitoring of wind turbines based on spatial-temporal feature aggregation networks," Renewable Energy, Elsevier, vol. 200(C), pages 751-766.
    5. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    6. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    7. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    8. Pere Marti-Puig & Alejandro Blanco-M & Juan José Cárdenas & Jordi Cusidó & Jordi Solé-Casals, 2019. "Feature Selection Algorithms for Wind Turbine Failure Prediction," Energies, MDPI, vol. 12(3), pages 1-18, January.
    9. Junshuai Yan & Yongqian Liu & Xiaoying Ren & Li Li, 2023. "Wind Turbine Gearbox Condition Monitoring Using Hybrid Attentions and Spatio-Temporal BiConvLSTM Network," Energies, MDPI, vol. 16(19), pages 1-22, September.
    10. Alessandro Murgia & Robbert Verbeke & Elena Tsiporkova & Ludovico Terzi & Davide Astolfi, 2023. "Discussion on the Suitability of SCADA-Based Condition Monitoring for Wind Turbine Fault Diagnosis through Temperature Data Analysis," Energies, MDPI, vol. 16(2), pages 1-20, January.
    11. Cristian Velandia-Cardenas & Yolanda Vidal & Francesc Pozo, 2021. "Wind Turbine Fault Detection Using Highly Imbalanced Real SCADA Data," Energies, MDPI, vol. 14(6), pages 1-26, March.
    12. Huifan Zeng & Juchuan Dai & Chengming Zuo & Huanguo Chen & Mimi Li & Fan Zhang, 2022. "Correlation Investigation of Wind Turbine Multiple Operating Parameters Based on SCADA Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
    13. Yolanda Vidal, 2023. "Artificial Intelligence for Wind Turbine Condition Monitoring," Energies, MDPI, vol. 16(4), pages 1-4, February.
    14. Tongke Yuan & Zhifeng Sun & Shihao Ma, 2019. "Gearbox Fault Prediction of Wind Turbines Based on a Stacking Model and Change-Point Detection," Energies, MDPI, vol. 12(22), pages 1-20, November.
    15. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    16. Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    17. Phong B. Dao, 2021. "A CUSUM-Based Approach for Condition Monitoring and Fault Diagnosis of Wind Turbines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    18. Yolanda Vidal & Francesc Pozo & Christian Tutivén, 2018. "Wind Turbine Multi-Fault Detection and Classification Based on SCADA Data," Energies, MDPI, vol. 11(11), pages 1-18, November.
    19. Zemali, Zakaria & Cherroun, Lakhmissi & Hadroug, Nadji & Hafaifa, Ahmed & Iratni, Abdelhamid & Alshammari, Obaid S. & Colak, Ilhami, 2023. "Robust intelligent fault diagnosis strategy using Kalman observers and neuro-fuzzy systems for a wind turbine benchmark," Renewable Energy, Elsevier, vol. 205(C), pages 873-898.
    20. Do, M. Hung & Söffker, Dirk, 2021. "State-of-the-art in integrated prognostics and health management control for utility-scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2792-:d:791286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.