IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v86y2023ipas0301420723010024.html
   My bibliography  Save this article

Adoptable approaches to predictive maintenance in mining industry: An overview

Author

Listed:
  • Dayo-Olupona, Oluwatobi
  • Genc, Bekir
  • Celik, Turgay
  • Bada, Samson

Abstract

The mining industry contributes to the expansion of the global economy by generating vital commodities. For continuous production, the industry relies significantly on machinery and equipment, which, as a result of greater modernization, are becoming increasingly complex, with a variety of systems and subsystems. However, maintaining the machinery and equipment used in the mining industry can be complex and costly. To improve the integration of Artificial Intelligence (AI) and Machine Learning (ML) technologies for equipment maintenance and to determine the best maintenance strategies, a systematic literature review was conducted to summarise the current state of research on equipment-related predictive maintenance (RP) in the mining industry. The review provides an overview of maintenance practices in the mining sector and examines PdM methodologies and processes used in other industries that may be applicable to the mining industry. In addition, this study discusses the different PdM architectures, processes, phases, and models (statistical and ML-based) used in creating a PdM plan. Furthermore, the review explores potential implementation directions for the PdM in the mining industry and highlights the challenges.

Suggested Citation

  • Dayo-Olupona, Oluwatobi & Genc, Bekir & Celik, Turgay & Bada, Samson, 2023. "Adoptable approaches to predictive maintenance in mining industry: An overview," Resources Policy, Elsevier, vol. 86(PA).
  • Handle: RePEc:eee:jrpoli:v:86:y:2023:i:pa:s0301420723010024
    DOI: 10.1016/j.resourpol.2023.104291
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420723010024
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2023.104291?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sunil D. Patil & Abhishek Mitra & Krishnaveni Tuggali Katarikonda & Jan-Douwe Wansink, 2021. "Predictive asset availability optimization for underground trucks and loaders in the mining industry," OPSEARCH, Springer;Operational Research Society of India, vol. 58(3), pages 751-772, September.
    2. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    3. Onifade, Moshood & Adebisi, John Adetunji & Shivute, Amtenge Penda & Genc, Bekir, 2023. "Challenges and applications of digital technology in the mineral industry," Resources Policy, Elsevier, vol. 85(PB).
    4. Prerita Odeyar & Derek B. Apel & Robert Hall & Brett Zon & Krzysztof Skrzypkowski, 2022. "A Review of Reliability and Fault Analysis Methods for Heavy Equipment and Their Components Used in Mining," Energies, MDPI, vol. 15(17), pages 1-27, August.
    5. Trizoglou, Pavlos & Liu, Xiaolei & Lin, Zi, 2021. "Fault detection by an ensemble framework of Extreme Gradient Boosting (XGBoost) in the operation of offshore wind turbines," Renewable Energy, Elsevier, vol. 179(C), pages 945-962.
    6. Chia-Yen Lee & Ting-Syun Huang & Meng-Kun Liu & Chen-Yang Lan, 2019. "Data Science for Vibration Heteroscedasticity and Predictive Maintenance of Rotary Bearings," Energies, MDPI, vol. 12(5), pages 1-18, February.
    7. Xiang, Sheng & Qin, Yi & Luo, Jun & Pu, Huayan & Tang, Baoping, 2021. "Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Zeki Murat Çınar & Abubakar Abdussalam Nuhu & Qasim Zeeshan & Orhan Korhan & Mohammed Asmael & Babak Safaei, 2020. "Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0," Sustainability, MDPI, vol. 12(19), pages 1-42, October.
    9. Dayo-Olupona, Oluwatobi & Genc, Bekir & Onifade, Moshood, 2020. "Technology adoption in mining: A multi-criteria method to select emerging technology in surface mines," Resources Policy, Elsevier, vol. 69(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhan, Jun & Wu, Chengkun & Yang, Canqun & Miao, Qiucheng & Wang, Shilin & Ma, Xiandong, 2022. "Condition monitoring of wind turbines based on spatial-temporal feature aggregation networks," Renewable Energy, Elsevier, vol. 200(C), pages 751-766.
    2. Maria Polorecka & Jozef Kubas & Pavel Danihelka & Katarina Petrlova & Katarina Repkova Stofkova & Katarina Buganova, 2021. "Use of Software on Modeling Hazardous Substance Release as a Support Tool for Crisis Management," Sustainability, MDPI, vol. 13(1), pages 1-15, January.
    3. Kamei, Sayaka & Taghipour, Sharareh, 2023. "A comparison study of centralized and decentralized federated learning approaches utilizing the transformer architecture for estimating remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    4. Justyna Łapińska & Iwona Escher & Joanna Górka & Agata Sudolska & Paweł Brzustewicz, 2021. "Employees’ Trust in Artificial Intelligence in Companies: The Case of Energy and Chemical Industries in Poland," Energies, MDPI, vol. 14(7), pages 1-20, April.
    5. André Marie Mbakop & Joseph Voufo & Florent Biyeme & Jean Raymond Lucien Meva’a, 2022. "Moving to a Flexible Shop Floor by Analyzing the Information Flow Coming from Levels of Decision on the Shop Floor of Developing Countries Using Artificial Neural Network: Cameroon, Case Study," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(2), pages 255-270, June.
    6. Chang, Yuanhong & Li, Fudong & Chen, Jinglong & Liu, Yulang & Li, Zipeng, 2022. "Efficient temporal flow Transformer accompanied with multi-head probsparse self-attention mechanism for remaining useful life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    7. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Zander, Bennet & Lange, Kerstin & Haasis, Hans-Dietrich, 2021. "Designing the data supply chain of a smart construction factory," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 41-62, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    9. Kartick Bhushan & Somnath Chattopadhyaya & Shubham Sharma & Kamal Sharma & Changhe Li & Yanbin Zhang & Elsayed Mohamed Tag Eldin, 2022. "Analyzing Reliability and Maintainability of Crawler Dozer BD155 Transmission Failure Using Markov Method and Total Productive Maintenance: A Novel Case Study for Improvement Productivity," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    10. Anbesh Jamwal & Sushma Kumari & Rajeev Agrawal & Monica Sharma & Ismail Gölgeci, 2024. "Unlocking Circular Economy Through Digital Transformation: the Role of Enabling Factors in SMEs," International Journal of Global Business and Competitiveness, Springer, vol. 19(1), pages 24-36, June.
    11. Zhu, Bangzhu & Wan, Chunzhuo & Wang, Ping, 2022. "Interval forecasting of carbon price: A novel multiscale ensemble forecasting approach," Energy Economics, Elsevier, vol. 115(C).
    12. Jacek Paś, 2023. "Issues Related to Power Supply Reliability in Integrated Electronic Security Systems Operated in Buildings and Vast Areas," Energies, MDPI, vol. 16(8), pages 1-22, April.
    13. Mohammad Alhusban & Mohannad Alhusban & Ayah A. Alkhawaldeh, 2023. "The Efficiency of Using Machine Learning Techniques in Fiber-Reinforced-Polymer Applications in Structural Engineering," Sustainability, MDPI, vol. 16(1), pages 1-32, December.
    14. Joaquin Vespignani & Russell Smyth, 2024. "Artificial intelligence investments reduce risks to critical mineral supply," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    15. Devika Kannan & Parvaneh Gholipour & Chunguang Bai, 2023. "Smart manufacturing as a strategic tool to mitigate sustainable manufacturing challenges: a case approach," Annals of Operations Research, Springer, vol. 331(1), pages 543-579, December.
    16. Liu, Zhenkun & Jiang, Ping & De Bock, Koen W. & Wang, Jianzhou & Zhang, Lifang & Niu, Xinsong, 2024. "Extreme gradient boosting trees with efficient Bayesian optimization for profit-driven customer churn prediction," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    17. Kumar, Anil & Parkash, Chander & Vashishtha, Govind & Tang, Hesheng & Kundu, Pradeep & Xiang, Jiawei, 2022. "State-space modeling and novel entropy-based health indicator for dynamic degradation monitoring of rolling element bearing," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    18. Zeki Murat Çınar & Qasim Zeeshan & Orhan Korhan, 2021. "A Framework for Industry 4.0 Readiness and Maturity of Smart Manufacturing Enterprises: A Case Study," Sustainability, MDPI, vol. 13(12), pages 1-32, June.
    19. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    20. Francesco Polese & Carmen Gallucci & Luca Carrubbo & Rosalia Santulli, 2021. "Predictive Maintenance as a Driver for Corporate Sustainability: Evidence from a Public-Private Co-Financed R&D Project," Sustainability, MDPI, vol. 13(11), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:86:y:2023:i:pa:s0301420723010024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.