IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v115y2022ics014098832200490x.html
   My bibliography  Save this article

Interval forecasting of carbon price: A novel multiscale ensemble forecasting approach

Author

Listed:
  • Zhu, Bangzhu
  • Wan, Chunzhuo
  • Wang, Ping

Abstract

Aiming at the limitations of carbon price point forecasting, we propose a novel integrated approach of binary empirical mode decomposition (BEMD), differential evolution (DE) algorithm, and extreme gradient boosting (XGB) for carbon price interval forecasting. Firstly, BEMD, which is suitable for interval time series, is introduced into decomposing complex carbon data into simple components. Secondly, XGB is used to forecast the obtained components, and DE is used to synchronously optimize all parameters of XGB. Thirdly, the individual component forecasting values are aggregated into carbon price forecasting values. Taking Guangdong and Hubei carbon markets as samples, in comparison with other popular prediction models, the proposed approach has a higher coverage rate and lower prediction error. The sensitivity analysis verifies that the proposed approach is robust.

Suggested Citation

  • Zhu, Bangzhu & Wan, Chunzhuo & Wang, Ping, 2022. "Interval forecasting of carbon price: A novel multiscale ensemble forecasting approach," Energy Economics, Elsevier, vol. 115(C).
  • Handle: RePEc:eee:eneeco:v:115:y:2022:i:c:s014098832200490x
    DOI: 10.1016/j.eneco.2022.106361
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098832200490X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2022.106361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buansing, T.S. Tuang & Golan, Amos & Ullah, Aman, 2020. "An information-theoretic approach for forecasting interval-valued SP500 daily returns," International Journal of Forecasting, Elsevier, vol. 36(3), pages 800-813.
    2. Liu, Min & Lee, Chien-Chiang, 2021. "Capturing the dynamics of the China crude oil futures: Markov switching, co-movement, and volatility forecasting," Energy Economics, Elsevier, vol. 103(C).
    3. Yu, Lean & Ma, Yueming & Ma, Mengyao, 2021. "An effective rolling decomposition-ensemble model for gasoline consumption forecasting," Energy, Elsevier, vol. 222(C).
    4. Gary Koop & Lise Tole, 2013. "Forecasting the European carbon market," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 723-741, June.
    5. Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021. "Machine learning and oil price point and density forecasting," Energy Economics, Elsevier, vol. 102(C).
    6. Lee, Chi-Chuan & Lee, Chien-Chiang, 2022. "How does green finance affect green total factor productivity? Evidence from China," Energy Economics, Elsevier, vol. 107(C).
    7. Zhu, Bangzhu & Huang, Liqing & Yuan, Lili & Ye, Shunxin & Wang, Ping, 2020. "Exploring the risk spillover effects between carbon market and electricity market: A bidimensional empirical mode decomposition based conditional value at risk approach," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 163-175.
    8. Ren, Xiaohang & Duan, Kun & Tao, Lizhu & Shi, Yukun & Yan, Cheng, 2022. "Carbon prices forecasting in quantiles," Energy Economics, Elsevier, vol. 108(C).
    9. Trizoglou, Pavlos & Liu, Xiaolei & Lin, Zi, 2021. "Fault detection by an ensemble framework of Extreme Gradient Boosting (XGBoost) in the operation of offshore wind turbines," Renewable Energy, Elsevier, vol. 179(C), pages 945-962.
    10. Liang-Ching Lin & Li-Hsien Sun, 2019. "Modeling financial interval time series," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-20, February.
    11. Heinermann, Justin & Kramer, Oliver, 2016. "Machine learning ensembles for wind power prediction," Renewable Energy, Elsevier, vol. 89(C), pages 671-679.
    12. Kostrzewski, Maciej & Kostrzewska, Jadwiga, 2019. "Probabilistic electricity price forecasting with Bayesian stochastic volatility models," Energy Economics, Elsevier, vol. 80(C), pages 610-620.
    13. Eugenia Sanin, María & Violante, Francesco & Mansanet-Bataller, María, 2015. "Understanding volatility dynamics in the EU-ETS market," Energy Policy, Elsevier, vol. 82(C), pages 321-331.
    14. Jiao, Lei & Liao, Yin & Zhou, Qing, 2018. "Predicting carbon market risk using information from macroeconomic fundamentals," Energy Economics, Elsevier, vol. 73(C), pages 212-227.
    15. Min Liu & Chien‐Chiang Lee & Wei‐Chong Choo, 2021. "An empirical study on the role of trading volume and data frequency in volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 792-816, August.
    16. M. L. Walker & Y. H. Dovoedo & S. Chakraborti & C. W. Hilton, 2018. "An Improved Boxplot for Univariate Data," The American Statistician, Taylor & Francis Journals, vol. 72(4), pages 348-353, October.
    17. Min Liu & Chien-Chiang Lee & Wei-Chong Choo, 2021. "The role of high-frequency data in volatility forecasting: evidence from the China stock market," Applied Economics, Taylor & Francis Journals, vol. 53(22), pages 2500-2526, May.
    18. Dabin Zhang & Qian Li & Amin W. Mugera & Liwen Ling, 2020. "A hybrid model considering cointegration for interval‐valued pork price forecasting in China," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1324-1341, December.
    19. Shen, Jim Huangnan & Long, Zhiming & Lee, Chien-Chiang & Zhang, Jun, 2022. "Comparative advantage, endowment structure, and trade imbalances," Structural Change and Economic Dynamics, Elsevier, vol. 60(C), pages 365-375.
    20. Taylor, James W., 2021. "Evaluating quantile-bounded and expectile-bounded interval forecasts," International Journal of Forecasting, Elsevier, vol. 37(2), pages 800-811.
    21. Bangzhu Zhu & Shunxin Ye & Ping Wang & Julien Chevallier & Yi‐Ming Wei, 2022. "Forecasting carbon price using a multi‐objective least squares support vector machine with mixture kernels," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 100-117, January.
    22. Zhu, Bangzhu & Yuan, Lili & Ye, Shunxin, 2019. "Examining the multi-timescales of European carbon market with grey relational analysis and empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 392-399.
    23. Lee, Chien-Chiang & Xing, Wenwu & Lee, Chi-Chuan, 2022. "The impact of energy security on income inequality: The key role of economic development," Energy, Elsevier, vol. 248(C).
    24. Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
    25. Zhou, Feite & Huang, Zhehao & Zhang, Changhong, 2022. "Carbon price forecasting based on CEEMDAN and LSTM," Applied Energy, Elsevier, vol. 311(C).
    26. Wang, Minggang & Zhu, Mengrui & Tian, Lixin, 2022. "A novel framework for carbon price forecasting with uncertainties," Energy Economics, Elsevier, vol. 112(C).
    27. Sun, Shaolong & Sun, Yuying & Wang, Shouyang & Wei, Yunjie, 2018. "Interval decomposition ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 76(C), pages 274-287.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piao Wang & Shahid Hussain Gurmani & Zhifu Tao & Jinpei Liu & Huayou Chen, 2024. "Interval time series forecasting: A systematic literature review," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 249-285, March.
    2. Xie, Gang & Jiang, Fuxin & Zhang, Chengyuan, 2023. "A secondary decomposition-ensemble methodology for forecasting natural gas prices using multisource data," Resources Policy, Elsevier, vol. 85(PA).
    3. Zhang, Huaquan & Yang, Fan & Chandio, Abbas Ali & Liu, Jing & Twumasi, Martinson Ankrah & Ozturk, Ilhan, 2023. "Assessing the effects of internet technology use on rural households' cooking energy consumption: Evidence from China," Energy, Elsevier, vol. 284(C).
    4. Zhang, Sheng-Hao & Yang, Jun & Feng, Chao, 2023. "Can internet development alleviate energy poverty? Evidence from China," Energy Policy, Elsevier, vol. 173(C).
    5. Xu, Bin, 2023. "Exploring the sustainable growth pathway of wind power in China: Using the semiparametric regression model," Energy Policy, Elsevier, vol. 183(C).
    6. Fang, Guochang & Chen, Gang & Yang, Kun & Yin, Weijun & Tian, Lixin, 2023. "Can green tax policy promote China's energy transformation?— A nonlinear analysis from production and consumption perspectives," Energy, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Min & Lee, Chien-Chiang, 2022. "Is gold a long-run hedge, diversifier, or safe haven for oil? Empirical evidence based on DCC-MIDAS," Resources Policy, Elsevier, vol. 76(C).
    2. Xu, Jin-Jin & Wang, Hai-Jie & Tang, Kai, 2022. "The sustainability of industrial structure on green eco-efficiency in the Yellow River Basin," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 775-788.
    3. Wang, Piao & Tao, Zhifu & Liu, Jinpei & Chen, Huayou, 2023. "Improving the forecasting accuracy of interval-valued carbon price from a novel multi-scale framework with outliers detection: An improved interval-valued time series analysis mode," Energy Economics, Elsevier, vol. 118(C).
    4. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    5. Liu, Min & Guo, Tongji & Ping, Weiying & Luo, Liangqing, 2023. "Sustainability and stability: Will ESG investment reduce the return and volatility spillover effects across the Chinese financial market?," Energy Economics, Elsevier, vol. 121(C).
    6. Lee, Chien-Chiang & He, Zhi-Wen & Xiao, Fu, 2022. "How does information and communication technology affect renewable energy technology innovation? International evidence," Renewable Energy, Elsevier, vol. 200(C), pages 546-557.
    7. Chao Zhang & Yihang Zhao & Huiru Zhao, 2022. "A Novel Hybrid Price Prediction Model for Multimodal Carbon Emission Trading Market Based on CEEMDAN Algorithm and Window-Based XGBoost Approach," Mathematics, MDPI, vol. 10(21), pages 1-16, November.
    8. Peng Chen & Andrew Vivian & Cheng Ye, 2022. "Forecasting carbon futures price: a hybrid method incorporating fuzzy entropy and extreme learning machine," Annals of Operations Research, Springer, vol. 313(1), pages 559-601, June.
    9. Jafar Hussain & Chien‐Chiang Lee, 2022. "A green path towards sustainable development: Optimal behavior of the duopoly game model with carbon neutrality instruments," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1523-1541, December.
    10. Zhu, Bangzhu & Huang, Liqing & Yuan, Lili & Ye, Shunxin & Wang, Ping, 2020. "Exploring the risk spillover effects between carbon market and electricity market: A bidimensional empirical mode decomposition based conditional value at risk approach," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 163-175.
    11. Po Yun & Chen Zhang & Yaqi Wu & Xianzi Yang & Zulfiqar Ali Wagan, 2020. "A Novel Extended Higher-Order Moment Multi-Factor Framework for Forecasting the Carbon Price: Testing on the Multilayer Long Short-Term Memory Network," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    12. Lee, Chien-Chiang & Yuan, Zihao & Wang, Qiaoru, 2022. "How does information and communication technology affect energy security? International evidence," Energy Economics, Elsevier, vol. 109(C).
    13. Hussain, Jafar & Lee, Chien-Chiang & Chen, Yongxiu, 2022. "Optimal green technology investment and emission reduction in emissions generating companies under the support of green bond and subsidy," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    14. Li, Dan & Li, Yijun & Wang, Chaoqun & Chen, Min & Wu, Qi, 2023. "Forecasting carbon prices based on real-time decomposition and causal temporal convolutional networks," Applied Energy, Elsevier, vol. 331(C).
    15. Zhu, Chen & Lee, Chien-Chiang, 2022. "The effects of low-carbon pilot policy on technological innovation: Evidence from prefecture-level data in China," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    16. Piao Wang & Shahid Hussain Gurmani & Zhifu Tao & Jinpei Liu & Huayou Chen, 2024. "Interval time series forecasting: A systematic literature review," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 249-285, March.
    17. Xian, Sidong & Feng, Miaomiao & Cheng, Yue, 2023. "Incremental nonlinear trend fuzzy granulation for carbon trading time series forecast," Applied Energy, Elsevier, vol. 352(C).
    18. Liu, Min, 2022. "The driving forces of green bond market volatility and the response of the market to the COVID-19 pandemic," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 288-309.
    19. Jianguo Zhou & Xuejing Huo & Xiaolei Xu & Yushuo Li, 2019. "Forecasting the Carbon Price Using Extreme-Point Symmetric Mode Decomposition and Extreme Learning Machine Optimized by the Grey Wolf Optimizer Algorithm," Energies, MDPI, vol. 12(5), pages 1-22, March.
    20. Ren, Xiaohang & Duan, Kun & Tao, Lizhu & Shi, Yukun & Yan, Cheng, 2022. "Carbon prices forecasting in quantiles," Energy Economics, Elsevier, vol. 108(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:115:y:2022:i:c:s014098832200490x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.