IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p1869-d327195.html
   My bibliography  Save this article

A Novel Extended Higher-Order Moment Multi-Factor Framework for Forecasting the Carbon Price: Testing on the Multilayer Long Short-Term Memory Network

Author

Listed:
  • Po Yun

    (School of Management, Hefei University of Technology, Hefei 230009, China)

  • Chen Zhang

    (School of Management, Hefei University of Technology, Hefei 230009, China
    Key Laboratory of Process Optimization and Intelligent Decision-Making, Ministry of Education, Hefei 230009, China)

  • Yaqi Wu

    (School of Management, Hefei University of Technology, Hefei 230009, China)

  • Xianzi Yang

    (School of Management, Hefei University of Technology, Hefei 230009, China)

  • Zulfiqar Ali Wagan

    (Department of Education and Literacy, Government of Sindh, Hyderabad 70060, Tando Jam, Pakistan)

Abstract

Predicting the carbon price accurately can not only promote the sustainability of the carbon market and the price driving mechanism of carbon emissions, but can also help investors avoid market risks and increase returns. However, previous research has only focused on the low-order moment perspective of the returns for predicting the carbon price, while ignoring the shock of extreme events and market asymmetry originating from its pricing factor markets. In this paper, a novel extended higher-order moment multi-factor framework (EHM-APT) was formed to improve the prediction and to capture the driving mechanism of the carbon price. Furthermore, a multi-layer and multi-variable Long Short-Term Memory Network (Multi-LSTM) model was constructed so that the parameters and structure could be determined experimentally for testing the performance of the proposed framework. The results show that the pricing framework considers the shock of extreme events and market asymmetry and can improve the prediction compared with a framework that does not consider the shock of higher-order moment terms. Additionally, the Multi-LSTM model is more competitive for prediction than other benchmark models. This conclusion proves the rationality and accuracy of the proposed framework. The application of the pricing framework encourages investors and financial institutions to pay more attention to the pricing factor of extreme events and market asymmetry for accurate price prediction and investment analysis.

Suggested Citation

  • Po Yun & Chen Zhang & Yaqi Wu & Xianzi Yang & Zulfiqar Ali Wagan, 2020. "A Novel Extended Higher-Order Moment Multi-Factor Framework for Forecasting the Carbon Price: Testing on the Multilayer Long Short-Term Memory Network," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1869-:d:327195
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/1869/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/1869/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karmakar, Madhusudan & Paul, Samit, 2016. "Intraday risk management in International stock markets: A conditional EVT approach," International Review of Financial Analysis, Elsevier, vol. 44(C), pages 34-55.
    2. Renée Fry-McKibbin & Cody Yu-Ling Hsiao, 2018. "Extremal dependence tests for contagion," Econometric Reviews, Taylor & Francis Journals, vol. 37(6), pages 626-649, July.
    3. Hwang, Soosung & Satchell, Stephen E, 1999. "Modelling Emerging Market Risk Premia Using Higher Moments," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 4(4), pages 271-296, October.
    4. Chevallier, Julien, 2009. "Carbon futures and macroeconomic risk factors: A view from the EU ETS," Energy Economics, Elsevier, vol. 31(4), pages 614-625, July.
    5. Zhu, Jiaming & Wu, Peng & Chen, Huayou & Liu, Jinpei & Zhou, Ligang, 2019. "Carbon price forecasting with variational mode decomposition and optimal combined model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 140-158.
    6. Eugenia Sanin, María & Violante, Francesco & Mansanet-Bataller, María, 2015. "Understanding volatility dynamics in the EU-ETS market," Energy Policy, Elsevier, vol. 82(C), pages 321-331.
    7. Benz, Eva & Trück, Stefan, 2009. "Modeling the price dynamics of CO2 emission allowances," Energy Economics, Elsevier, vol. 31(1), pages 4-15, January.
    8. Hedayati , Amin & Hedayati , Moein & Esfandyari, Morteza, 2016. "Stock market index prediction using artificial neural network," Journal of Economics, Finance and Administrative Science, Universidad ESAN, vol. 21(41), pages 89-93.
    9. Lambert Schneider & Stephanie La Hoz Theuer, 2019. "Environmental integrity of international carbon market mechanisms under the Paris Agreement," Climate Policy, Taylor & Francis Journals, vol. 19(3), pages 386-400, March.
    10. Mingyue Qiu & Yu Song, 2016. "Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-11, May.
    11. Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong & Sousa, Ricardo M., 2015. "An empirical analysis of energy cost pass-through to CO2 emission prices," Energy Economics, Elsevier, vol. 49(C), pages 149-156.
    12. repec:dau:papers:123456789/4210 is not listed on IDEAS
    13. Byun, Suk Joon & Cho, Hangjun, 2013. "Forecasting carbon futures volatility using GARCH models with energy volatilities," Energy Economics, Elsevier, vol. 40(C), pages 207-221.
    14. Amaya, Diego & Christoffersen, Peter & Jacobs, Kris & Vasquez, Aurelio, 2015. "Does realized skewness predict the cross-section of equity returns?," Journal of Financial Economics, Elsevier, vol. 118(1), pages 135-167.
    15. Baochen Yang & Chuanze Liu & Zehao Gou & Jiacheng Man & Yunpeng Su, 2018. "How Will Policies of China’s CO 2 ETS Affect its Carbon Price: Evidence from Chinese Pilot Regions," Sustainability, MDPI, vol. 10(3), pages 1-26, February.
    16. Giovanni De Luca & Nicola Loperfido, 2015. "Modelling multivariate skewness in financial returns: a SGARCH approach," The European Journal of Finance, Taylor & Francis Journals, vol. 21(13-14), pages 1113-1131, November.
    17. Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
    18. Gary Koop & Lise Tole, 2013. "Forecasting the European carbon market," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 723-741, June.
    19. Chevallier, Julien, 2011. "Nonparametric modeling of carbon prices," Energy Economics, Elsevier, vol. 33(6), pages 1267-1282.
    20. repec:dau:papers:123456789/6791 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xian, Sidong & Feng, Miaomiao & Cheng, Yue, 2023. "Incremental nonlinear trend fuzzy granulation for carbon trading time series forecast," Applied Energy, Elsevier, vol. 352(C).
    2. Po Yun & Chen Zhang & Yaqi Wu & Yu Yang, 2022. "Forecasting Carbon Dioxide Price Using a Time-Varying High-Order Moment Hybrid Model of NAGARCHSK and Gated Recurrent Unit Network," IJERPH, MDPI, vol. 19(2), pages 1-19, January.
    3. Fansheng Meng & Rong Dou, 2024. "Prophet-LSTM-BP Ensemble Carbon Trading Price Prediction Model," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 1805-1825, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
    2. Ren, Xiaohang & Duan, Kun & Tao, Lizhu & Shi, Yukun & Yan, Cheng, 2022. "Carbon prices forecasting in quantiles," Energy Economics, Elsevier, vol. 108(C).
    3. Bangzhu Zhu & Shunxin Ye & Ping Wang & Julien Chevallier & Yi‐Ming Wei, 2022. "Forecasting carbon price using a multi‐objective least squares support vector machine with mixture kernels," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 100-117, January.
    4. Jianguo Zhou & Xuejing Huo & Xiaolei Xu & Yushuo Li, 2019. "Forecasting the Carbon Price Using Extreme-Point Symmetric Mode Decomposition and Extreme Learning Machine Optimized by the Grey Wolf Optimizer Algorithm," Energies, MDPI, vol. 12(5), pages 1-22, March.
    5. Po Yun & Chen Zhang & Yaqi Wu & Yu Yang, 2022. "Forecasting Carbon Dioxide Price Using a Time-Varying High-Order Moment Hybrid Model of NAGARCHSK and Gated Recurrent Unit Network," IJERPH, MDPI, vol. 19(2), pages 1-19, January.
    6. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    7. Demiralay, Sercan & Gencer, Hatice Gaye & Bayraci, Selcuk, 2022. "Carbon credit futures as an emerging asset: Hedging, diversification and downside risks," Energy Economics, Elsevier, vol. 113(C).
    8. Peng Chen & Andrew Vivian & Cheng Ye, 2022. "Forecasting carbon futures price: a hybrid method incorporating fuzzy entropy and extreme learning machine," Annals of Operations Research, Springer, vol. 313(1), pages 559-601, June.
    9. Wen Zhang & Zhibin Wu, 2022. "Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 615-632, April.
    10. Katarzyna Rudnik & Anna Hnydiuk-Stefan & Aneta Kucińska-Landwójtowicz & Łukasz Mach, 2022. "Forecasting Day-Ahead Carbon Price by Modelling Its Determinants Using the PCA-Based Approach," Energies, MDPI, vol. 15(21), pages 1-23, October.
    11. Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
    12. Jin, Jiayu & Han, Liyan & Wu, Lei & Zeng, Hongchao, 2020. "The hedging effect of green bonds on carbon market risk," International Review of Financial Analysis, Elsevier, vol. 71(C).
    13. Chen, Linfei & Zhao, Xuefeng, 2024. "A multiscale and multivariable differentiated learning for carbon price forecasting," Energy Economics, Elsevier, vol. 131(C).
    14. Wang, Minggang & Zhu, Mengrui & Tian, Lixin, 2022. "A novel framework for carbon price forecasting with uncertainties," Energy Economics, Elsevier, vol. 112(C).
    15. Zhu, Bangzhu & Ye, Shunxin & Han, Dong & Wang, Ping & He, Kaijian & Wei, Yi-Ming & Xie, Rui, 2019. "A multiscale analysis for carbon price drivers," Energy Economics, Elsevier, vol. 78(C), pages 202-216.
    16. Uddin, Gazi Salah & Hernandez, Jose Areola & Shahzad, Syed Jawad Hussain & Hedström, Axel, 2018. "Multivariate dependence and spillover effects across energy commodities and diversification potentials of carbon assets," Energy Economics, Elsevier, vol. 71(C), pages 35-46.
    17. Tan, Xue-Ping & Wang, Xin-Yu, 2017. "Dependence changes between the carbon price and its fundamentals: A quantile regression approach," Applied Energy, Elsevier, vol. 190(C), pages 306-325.
    18. Wang, Jiqian & Guo, Xiaozhu & Tan, Xueping & Chevallier, Julien & Ma, Feng, 2023. "Which exogenous driver is informative in forecasting European carbon volatility: Bond, commodity, stock or uncertainty?," Energy Economics, Elsevier, vol. 117(C).
    19. Hyeonho Kim & Yujin Kim & Yongho Ko & Seungwoo Han, 2022. "Performance Comparison of Predictive Methodologies for Carbon Emission Credit Price in the Korea Emission Trading System," Sustainability, MDPI, vol. 14(13), pages 1-20, July.
    20. Gao, Feng & Shao, Xueyan, 2022. "A novel interval decomposition ensemble model for interval carbon price forecasting," Energy, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1869-:d:327195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.