Probability density prediction for carbon allowance prices based on TS2Vec and distribution Transformer
Author
Abstract
Suggested Citation
DOI: 10.1016/j.eneco.2024.107986
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Oguzhan Cepni, Duc Khuong Nguyen, and Ahmet Sensoy, 2022. "News Media and Attention Spillover across Energy Markets: A Powerful Predictor of Crude Oil Futures Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
- Ren, Xiaohang & Duan, Kun & Tao, Lizhu & Shi, Yukun & Yan, Cheng, 2022. "Carbon prices forecasting in quantiles," Energy Economics, Elsevier, vol. 108(C).
- Yu, Xianyu & Hu, Yuezhi & Zhou, Dequn & Wang, Qunwei & Sang, Xiuzhi & Huang, Kai, 2023. "Carbon emission reduction analysis for cloud computing industry: Can carbon emissions trading and technology innovation help?," Energy Economics, Elsevier, vol. 125(C).
- Chen, Xing & Lin, Boqiang, 2021. "Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China," Energy Policy, Elsevier, vol. 157(C).
- Wang, Xuerui & Li, Xiangyu & Li, Shaoting, 2022. "Point and interval forecasting system for crude oil price based on complete ensemble extreme-point symmetric mode decomposition with adaptive noise and intelligent optimization algorithm," Applied Energy, Elsevier, vol. 328(C).
- Wang, Piao & Tao, Zhifu & Liu, Jinpei & Chen, Huayou, 2023. "Improving the forecasting accuracy of interval-valued carbon price from a novel multi-scale framework with outliers detection: An improved interval-valued time series analysis mode," Energy Economics, Elsevier, vol. 118(C).
- David, Mathieu & Luis, Mazorra Aguiar & Lauret, Philippe, 2018. "Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data," International Journal of Forecasting, Elsevier, vol. 34(3), pages 529-547.
- Changyeon Lee & Jaekyung Lee & Sungjin Park, 2023. "Forecasting the urbanization dynamics in the Seoul metropolitan area using a long short-term memory–based model," Environment and Planning B, , vol. 50(2), pages 453-468, February.
- Zhu, Bangzhu & Wan, Chunzhuo & Wang, Ping, 2022. "Interval forecasting of carbon price: A novel multiscale ensemble forecasting approach," Energy Economics, Elsevier, vol. 115(C).
- Jules Sadefo Kamdem & Passy Miano Mukami & James Njong, 2023. "Time-frequency analysis and machine learning models for carbon market forecasting," Post-Print hal-04134564, HAL.
- Sen, Parag & Roy, Mousumi & Pal, Parimal, 2016. "Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization," Energy, Elsevier, vol. 116(P1), pages 1031-1038.
- Chaturvedi, Shobhit & Rajasekar, Elangovan & Natarajan, Sukumar & McCullen, Nick, 2022. "A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India," Energy Policy, Elsevier, vol. 168(C).
- Ouyang, Zisheng & Lu, Min & Lai, Yongzeng, 2023. "Forecasting stock index return and volatility based on GAVMD- Carbon-BiLSTM: How important is carbon emission trading?," Energy Economics, Elsevier, vol. 128(C).
- Dütschke, Elisabeth & Preuß, Sabine & Brunzema, Iska & Piria, Raffaele, 2023. "Using the revenues from carbon pricing - Insights into the acceptance and perceptions of particularly burdened groups," Energy Policy, Elsevier, vol. 175(C).
- Lei, Heng & Xue, Minggao & Liu, Huiling, 2022. "Probability distribution forecasting of carbon allowance prices: A hybrid model considering multiple influencing factors," Energy Economics, Elsevier, vol. 113(C).
- Matthew Paterson, 2012. "Who and what are carbon markets for? Politics and the development of climate policy," Climate Policy, Taylor & Francis Journals, vol. 12(1), pages 82-97, January.
- Mohammadehsan Eslahi & Paolo Mazza, 2023. "Can weather variables and electricity demand predict carbon emissions allowances prices? Evidence from the first three phases of the EU ETS," Post-Print hal-04282454, HAL.
- Liu, Bingchun & Song, Chengyuan & Liang, Xiaoqin & Lai, Mingzhao & Yu, Zhecheng & Ji, Jie, 2023. "Regional differences in China's electric vehicle sales forecasting: Under supply-demand policy scenarios," Energy Policy, Elsevier, vol. 177(C).
- Wang, Huaizhi & Xue, Wenli & Liu, Yitao & Peng, Jianchun & Jiang, Hui, 2020. "Probabilistic wind power forecasting based on spiking neural network," Energy, Elsevier, vol. 196(C).
- Ma, Xuejiao & Jiang, Ping & Jiang, Qichuan, 2020. "Research and application of association rule algorithm and an optimized grey model in carbon emissions forecasting," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
- Li, Mingquan & Gao, Huiwen & Abdulla, Ahmed & Shan, Rui & Gao, Shuo, 2022. "Combined effects of carbon pricing and power market reform on CO2 emissions reduction in China's electricity sector," Energy, Elsevier, vol. 257(C).
- Eslahi, Mohammadehsan & Mazza, Paolo, 2023. "Can weather variables and electricity demand predict carbon emissions allowances prices? Evidence from the first three phases of the EU ETS," Ecological Economics, Elsevier, vol. 214(C).
- Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
- Oguzhan Cepni & Duc Khuong Nguyen & Ahmet Sensoy, 2022. "News Media and Attention Spillover across Energy Markets: A Powerful Predictor of Crude Oil Futures Prices," The Energy Journal, , vol. 43(1_suppl), pages 1-30, June.
- Bartolini, Andrea & Mazzoni, Stefano & Comodi, Gabriele & Romagnoli, Alessandro, 2021. "Impact of carbon pricing on distributed energy systems planning," Applied Energy, Elsevier, vol. 301(C).
- Luo, Jian & Hong, Tao & Gao, Zheming & Fang, Shu-Cherng, 2023. "A robust support vector regression model for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 1005-1020.
- Wang, Minggang & Zhu, Mengrui & Tian, Lixin, 2022. "A novel framework for carbon price forecasting with uncertainties," Energy Economics, Elsevier, vol. 112(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang, Kun & Sun, Yuying & Hong, Yongmiao & Wang, Shouyang, 2024. "Forecasting interval carbon price through a multi-scale interval-valued decomposition ensemble approach," Energy Economics, Elsevier, vol. 139(C).
- Zhu, Mengrui & Xu, Hua & Wang, Minggang & Tian, Lixin, 2024. "Carbon price interval prediction method based on probability density recurrence network and interval multi-layer perceptron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
- Liu, Shuihan & Xie, Gang & Wang, Zhengzhong & Wang, Shouyang, 2024. "A secondary decomposition-ensemble framework for interval carbon price forecasting," Applied Energy, Elsevier, vol. 359(C).
- Ding, Song & Zhang, Huahan, 2023. "Forecasting Chinese provincial CO2 emissions: A universal and robust new-information-based grey model," Energy Economics, Elsevier, vol. 121(C).
- Liu, Jinpei & Zhao, Xiaoman & Luo, Rui & Tao, Zhifu, 2024. "A novel link prediction model for interval-valued crude oil prices based on complex network and multi-source information," Applied Energy, Elsevier, vol. 376(PB).
- Piao Wang & Shahid Hussain Gurmani & Zhifu Tao & Jinpei Liu & Huayou Chen, 2024. "Interval time series forecasting: A systematic literature review," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 249-285, March.
- Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
- Ye, Li & Yang, Deling & Dang, Yaoguo & Wang, Junjie, 2022. "An enhanced multivariable dynamic time-delay discrete grey forecasting model for predicting China's carbon emissions," Energy, Elsevier, vol. 249(C).
- Hu, Yusha & Man, Yi, 2023. "Energy consumption and carbon emissions forecasting for industrial processes: Status, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Huiping Wang & Yi Wang, 2022. "Estimating per Capita Primary Energy Consumption Using a Novel Fractional Gray Bernoulli Model," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
- Zhu, Bangzhu & Wan, Chunzhuo & Wang, Ping, 2022. "Interval forecasting of carbon price: A novel multiscale ensemble forecasting approach," Energy Economics, Elsevier, vol. 115(C).
- Banerjee, Ameet Kumar & Pradhan, H.K. & Akhtaruzzaman, Md & Sensoy, Ahmet & Dann, Susan, 2024. "Anatomy of sovereign yield behaviour using textual news," Research in International Business and Finance, Elsevier, vol. 71(C).
- Tianqi Pang & Kehui Tan & Chenyou Fan, 2023. "Carbon Price Forecasting with Quantile Regression and Feature Selection," Papers 2305.03224, arXiv.org.
- An, Yimeng & Dang, Yaoguo & Wang, Junjie & Zhou, Huimin & Mai, Son T., 2024. "Mixed-frequency data Sampling Grey system Model: Forecasting annual CO2 emissions in China with quarterly and monthly economic-energy indicators," Applied Energy, Elsevier, vol. 370(C).
- Xin-gang, Zhao & Shuran, Hu & Hui, Wang & Haowei, Chen & Wenbin, Zhang & Wenjie, Lu, 2024. "Energy, economic, and environmental impacts of electricity market-oriented reform and the carbon emissions trading: A recursive dynamic CGE model in China," Energy, Elsevier, vol. 298(C).
- Liu, Wenwen & Zhao, Peng & Luo, Ziyang & Tang, Miaomiao, 2024. "The dynamic impact of network attention on natural resources prices in pre-and post-Russian-Ukrainian war," Resources Policy, Elsevier, vol. 97(C).
- Dinggao Liu & Liuqing Wang & Shuo Lin & Zhenpeng Tang, 2025. "A Novel Multi-Task Learning Framework for Interval-Valued Carbon Price Forecasting Using Online News and Search Engine Data," Mathematics, MDPI, vol. 13(3), pages 1-23, January.
- Wang, Ning & Guo, Ziyu & Shang, Dawei & Li, Keyuyang, 2024. "Carbon trading price forecasting in digitalization social change era using an explainable machine learning approach: The case of China as emerging country evidence," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
- Jia, Zhijie & Wen, Shiyan, 2024. "Interaction effects of market-based and incentive-driven low-carbon policies on carbon emissions," Energy Economics, Elsevier, vol. 137(C).
- Bangzhu Zhu & Chunzhuo Wan & Ping Wang & Julien Chevallier, 2025. "Interval Forecasting of Carbon Price With a Novel Hybrid Multiscale Decomposition and Bootstrap Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 376-390, March.
More about this item
Keywords
Carbon allowance prices; Probability density prediction; Unsupervised contrastive learning; Distribution Transformer;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:140:y:2024:i:c:s0140988324006947. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.