IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v214y2023ics0921800923002483.html
   My bibliography  Save this article

Can weather variables and electricity demand predict carbon emissions allowances prices? Evidence from the first three phases of the EU ETS

Author

Listed:
  • Eslahi, Mohammadehsan
  • Mazza, Paolo

Abstract

This study examines the predictive impact of weather conditions and electricity demand on hourly spot prices of emissions allowances during the first three phases of the European Union Emissions Trading System (EU ETS) (2005–2019). We propose an original methodology for constructing European-scale electricity demand and weather indices and characterize the relationship between those indices and emissions allowances prices by means of an advanced predictive modeling technique (Extreme Gradient Boosting). Empirical findings assert that electricity demand and the weather variables under study were of importance for estimating EUA prices during the first three phases of the EU ETS, with air temperature and electricity demand being most relevant to emissions allowances prices. Conversely, total precipitation and relative humidity proved to be the least relevant variables to the outcome. The results also indicate that the relationship between emissions allowances prices and their weather-related predictors was not linear in the studied period. The paper contributes to the growing body of literature on the structural determinants of carbon prices in the EU ETS and enhances our understanding of the impact of climate and weather variability – in the provision of renewable energy production – on the most prominent market-based measure to reduce CO2 emissions in Europe.

Suggested Citation

  • Eslahi, Mohammadehsan & Mazza, Paolo, 2023. "Can weather variables and electricity demand predict carbon emissions allowances prices? Evidence from the first three phases of the EU ETS," Ecological Economics, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:ecolec:v:214:y:2023:i:c:s0921800923002483
    DOI: 10.1016/j.ecolecon.2023.107985
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800923002483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2023.107985?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James McFarland & Yuyu Zhou & Leon Clarke & Patrick Sullivan & Jesse Colman & Wendy Jaglom & Michelle Colley & Pralit Patel & Jiyon Eom & Son Kim & G. Kyle & Peter Schultz & Boddu Venkatesh & Juanita , 2015. "Impacts of rising air temperatures and emissions mitigation on electricity demand and supply in the United States: a multi-model comparison," Climatic Change, Springer, vol. 131(1), pages 111-125, July.
    2. Hintermann, Beat, 2010. "Allowance price drivers in the first phase of the EU ETS," Journal of Environmental Economics and Management, Elsevier, vol. 59(1), pages 43-56, January.
    3. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    4. repec:dau:papers:123456789/4222 is not listed on IDEAS
    5. Creti, Anna & Jouvet, Pierre-André & Mignon, Valérie, 2012. "Carbon price drivers: Phase I versus Phase II equilibrium?," Energy Economics, Elsevier, vol. 34(1), pages 327-334.
    6. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    7. Seifert, Jan & Uhrig-Homburg, Marliese & Wagner, Michael, 2008. "Dynamic behavior of CO2 spot prices," Journal of Environmental Economics and Management, Elsevier, vol. 56(2), pages 180-194, September.
    8. Benz, Eva & Trück, Stefan, 2009. "Modeling the price dynamics of CO2 emission allowances," Energy Economics, Elsevier, vol. 31(1), pages 4-15, January.
    9. Lutz, Benjamin Johannes & Pigorsch, Uta & Rotfuß, Waldemar, 2013. "Nonlinearity in cap-and-trade systems: The EUA price and its fundamentals," Energy Economics, Elsevier, vol. 40(C), pages 222-232.
    10. Graeme Chamberlin, 2010. "Methods Explained: Temporal disaggregation," Economic & Labour Market Review, Palgrave Macmillan;Office for National Statistics, vol. 4(11), pages 106-121, November.
    11. Julien Chevallier, 2013. "Carbon Price Drivers: An Updated Literature Review," International Journal of Applied Logistics (IJAL), IGI Global, vol. 4(4), pages 1-7, October.
    12. Daniel W. Apley & Jingyu Zhu, 2020. "Visualizing the effects of predictor variables in black box supervised learning models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 1059-1086, September.
    13. Sharif, Arshian & Mishra, Shekhar & Sinha, Avik & Jiao, Zhilun & Shahbaz, Muhammad & Afshan, Sahar, 2020. "The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach," Renewable Energy, Elsevier, vol. 150(C), pages 670-690.
    14. Sax, Christoph & Steiner, Peter, 2013. "Temporal Disaggregation of Time Series," MPRA Paper 53389, University Library of Munich, Germany.
    15. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    16. Pardo, Angel & Meneu, Vicente & Valor, Enric, 2002. "Temperature and seasonality influences on Spanish electricity load," Energy Economics, Elsevier, vol. 24(1), pages 55-70, January.
    17. Rickels Wilfried & Görlich Dennis & Peterson Sonja, 2015. "Explaining European Emission Allowance Price Dynamics: Evidence from Phase II," German Economic Review, De Gruyter, vol. 16(2), pages 181-202, May.
    18. A. C. Christiansen & A. Arvanitakis & K. Tangen & H. Hasselknippe, 2005. "Price determinants in the EU emissions trading scheme," Climate Policy, Taylor & Francis Journals, vol. 5(1), pages 15-30, January.
    19. Grischa Perino & Maximilian Willner & Simon Quemin & Michael Pahle, 2022. "The European Union Emissions Trading System Market Stability Reserve: Does It Stabilize or Destabilize the Market?," Review of Environmental Economics and Policy, University of Chicago Press, vol. 16(2), pages 338-345.
    20. Jiaxiong Yao, 2021. "Electricity Consumption and Temperature: Evidence from Satellite Data," IMF Working Papers 2021/022, International Monetary Fund.
    21. Ampudia, Miguel & Bua, Giovanna & Kapp, Daniel & Salakhova, Dilyara, 2022. "The role of speculation during the recent increase in EU emissions allowance prices," Economic Bulletin Boxes, European Central Bank, vol. 3.
    22. Ibrahim Ahamada & Djamel Kirat, 2015. "The impact of phase II of the EU ETS on wholesale electricity prices," Revue d'économie politique, Dalloz, vol. 125(6), pages 887-908.
    23. Oberndorfer, Ulrich, 2009. "EU Emission Allowances and the stock market: Evidence from the electricity industry," Ecological Economics, Elsevier, vol. 68(4), pages 1116-1126, February.
    24. Thatcher, Marcus J., 2007. "Modelling changes to electricity demand load duration curves as a consequence of predicted climate change for Australia," Energy, Elsevier, vol. 32(9), pages 1647-1659.
    25. Hekkenberg, M. & Benders, R.M.J. & Moll, H.C. & Schoot Uiterkamp, A.J.M., 2009. "Indications for a changing electricity demand pattern: The temperature dependence of electricity demand in the Netherlands," Energy Policy, Elsevier, vol. 37(4), pages 1542-1551, April.
    26. Maria Mansanet-Bataller & Angel Pardo & Enric Valor, 2007. "CO2 Prices, Energy and Weather," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 73-92.
    27. repec:dau:papers:123456789/5269 is not listed on IDEAS
    28. James McFarland & Yuyu Zhou & Leon Clarke & Patrick Sullivan & Jesse Colman & Wendy Jaglom & Michelle Colley & Pralit Patel & Jiyon Eom & Son Kim & G. Kyle & Peter Schultz & Boddu Venkatesh & Juanita , 2015. "Erratum to: Impacts of rising air temperatures and emissions mitigation on electricity demand and supply in the United States: a multi-model comparison," Climatic Change, Springer, vol. 132(4), pages 739-739, October.
    29. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
    30. Don Bredin and John Parsons, 2016. "Why is Spot Carbon so Cheap and Future Carbon so Dear? The Term Structure of Carbon Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    31. Henley, Andrew & Peirson, John, 1997. "Non-linearities in Electricity Demand and Temperature: Parametric versus Non-parametric Methods," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(1), pages 149-162, February.
    32. Daskalakis, George & Psychoyios, Dimitris & Markellos, Raphael N., 2009. "Modeling CO2 emission allowance prices and derivatives: Evidence from the European trading scheme," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1230-1241, July.
    33. Bredin, Don & Muckley, Cal, 2011. "An emerging equilibrium in the EU emissions trading scheme," Energy Economics, Elsevier, vol. 33(2), pages 353-362, March.
    34. Batten, Jonathan A. & Maddox, Grace E. & Young, Martin R., 2021. "Does weather, or energy prices, affect carbon prices?," Energy Economics, Elsevier, vol. 96(C).
    35. Johanna Cludius and Regina Betz, 2020. "The Role of Banks in EU Emissions Trading," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 275-300.
    36. Jane Ebinger & Walter Vergara, 2011. "Climate Impacts on Energy Systems : Key Issues for Energy Sector Adaptation," World Bank Publications - Books, The World Bank Group, number 2271, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Friedrich, Marina & Mauer, Eva-Maria & Pahle, Michael & Tietjen, Oliver, 2020. "From fundamentals to financial assets: the evolution of understanding price formation in the EU ETS," EconStor Preprints 196150, ZBW - Leibniz Information Centre for Economics, revised 2020.
    2. Duan, Kun & Ren, Xiaohang & Shi, Yukun & Mishra, Tapas & Yan, Cheng, 2021. "The marginal impacts of energy prices on carbon price variations: Evidence from a quantile-on-quantile approach," Energy Economics, Elsevier, vol. 95(C).
    3. Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2017. "Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 692-704.
    4. Aatola, Piia & Ollikainen, Markku & Toppinen, Anne, 2013. "Price determination in the EU ETS market: Theory and econometric analysis with market fundamentals," Energy Economics, Elsevier, vol. 36(C), pages 380-395.
    5. Fang, Sheng & Lu, Xinsheng & Li, Jianfeng & Qu, Ling, 2018. "Multifractal detrended cross-correlation analysis of carbon emission allowance and stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 551-566.
    6. Hammoudeh, Shawkat & Nguyen, Duc Khuong & Sousa, Ricardo M., 2014. "What explain the short-term dynamics of the prices of CO2 emissions?," Energy Economics, Elsevier, vol. 46(C), pages 122-135.
    7. Hintermann, Beat & Peterson, Sonja & Rickels, Wilfried, 2014. "Price and market behavior in Phase II of the EU ETS," Kiel Working Papers 1962, Kiel Institute for the World Economy (IfW Kiel).
    8. Nicolas Koch, 2014. "Dynamic linkages among carbon, energy and financial markets: a smooth transition approach," Applied Economics, Taylor & Francis Journals, vol. 46(7), pages 715-729, March.
    9. Creti, Anna & Jouvet, Pierre-André & Mignon, Valérie, 2012. "Carbon price drivers: Phase I versus Phase II equilibrium?," Energy Economics, Elsevier, vol. 34(1), pages 327-334.
    10. Gavard, Claire & Kirat, Djamel, 2018. "Flexibility in the market for international carbon credits and price dynamics difference with European allowances," Energy Economics, Elsevier, vol. 76(C), pages 504-518.
    11. Chevallier, Julien, 2011. "A model of carbon price interactions with macroeconomic and energy dynamics," Energy Economics, Elsevier, vol. 33(6), pages 1295-1312.
    12. Cretí, Anna & Joëts, Marc, 2017. "Multiple bubbles in the European Union Emission Trading Scheme," Energy Policy, Elsevier, vol. 107(C), pages 119-130.
    13. Medina, Vicente & Pardo, Ángel & Pascual, Roberto, 2014. "The timeline of trading frictions in the European carbon market," Energy Economics, Elsevier, vol. 42(C), pages 378-394.
    14. Xu, Yingying, 2021. "Risk spillover from energy market uncertainties to the Chinese carbon market," Pacific-Basin Finance Journal, Elsevier, vol. 67(C).
    15. Lovcha, Yuliya & Pérez Laborda, Àlex & Sikora, Iryna, 2019. "The Determinants of CO2 prices in the EU ETS System," Working Papers 2072/376031, Universitat Rovira i Virgili, Department of Economics.
    16. Yan, Kai & Zhang, Wei & Shen, Dehua, 2020. "Stylized facts of the carbon emission market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    17. Jia, Jun-Jun & Xu, Jin-Hua & Fan, Ying, 2016. "The impact of verified emissions announcements on the European Union emissions trading scheme: A bilaterally modified dummy variable modelling analysis," Applied Energy, Elsevier, vol. 173(C), pages 567-577.
    18. Bai, Yiyi & Okullo, Samuel J., 2023. "Drivers and pass-through of the EU ETS price: Evidence from the power sector," Energy Economics, Elsevier, vol. 123(C).
    19. Chun, Dohyun & Cho, Hoon & Kim, Jihun, 2022. "The relationship between carbon-intensive fuel and renewable energy stock prices under the emissions trading system," Energy Economics, Elsevier, vol. 114(C).
    20. Dorota Ciesielska-Maciągowska & Dawid Klimczak & Małgorzata Skrzek-Lubasińska, 2021. "Central and Eastern European CO 2 Market—Challenges of Emissions Trading for Energy Companies," Energies, MDPI, vol. 14(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:214:y:2023:i:c:s0921800923002483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.