IDEAS home Printed from
   My bibliography  Save this article

Machine learning ensembles for wind power prediction


  • Heinermann, Justin
  • Kramer, Oliver


For a sustainable integration of wind power into the electricity grid, a precise prediction method is required. In this work, we investigate the use of machine learning ensembles for wind power prediction. We first analyze homogeneous ensemble regressors that make use of a single base algorithm and compare decision trees to k-nearest neighbors and support vector regression. As next step, we construct heterogeneous ensembles that make use of multiple base algorithms and benefit from a gain of diversity among the weak predictors. In the experimental evaluation, we show that a combination of decision trees and support vector regression outperforms state-of-the-art predictors (improvements of up to 37% compared to support vector regression) as well as homogeneous ensembles while requiring a shorter runtime (speed-ups from 1.60× to 8.78×). Furthermore, we show the heterogeneous ensemble prediction can be improved when using high-dimensional patterns by increasing the number of past steps considered and hereby the spatio-temporal information available by the measurements of the nearby turbines. The experiments are based on a large wind time series data set from simulations and real measurements.

Suggested Citation

  • Heinermann, Justin & Kramer, Oliver, 2016. "Machine learning ensembles for wind power prediction," Renewable Energy, Elsevier, vol. 89(C), pages 671-679.
  • Handle: RePEc:eee:renene:v:89:y:2016:i:c:p:671-679
    DOI: 10.1016/j.renene.2015.11.073

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Thordis L. Thorarinsdottir & Tilmann Gneiting, 2010. "Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 371-388.
    2. Ramasamy, P. & Chandel, S.S. & Yadav, Amit Kumar, 2015. "Wind speed prediction in the mountainous region of India using an artificial neural network model," Renewable Energy, Elsevier, vol. 80(C), pages 338-347.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:renene:v:109:y:2017:i:c:p:529-541 is not listed on IDEAS
    2. repec:eee:renene:v:126:y:2018:i:c:p:254-269 is not listed on IDEAS
    3. repec:gam:jeners:v:11:y:2018:i:5:p:1098-:d:143859 is not listed on IDEAS
    4. repec:eee:energy:v:157:y:2018:i:c:p:211-226 is not listed on IDEAS
    5. Ouyang, Tinghui & Zha, Xiaoming & Qin, Liang & Xiong, Yi & Huang, Heming, 2017. "Model of selecting prediction window in ramps forecasting," Renewable Energy, Elsevier, vol. 108(C), pages 98-107.
    6. Lolli, F. & Gamberini, R. & Regattieri, A. & Balugani, E. & Gatos, T. & Gucci, S., 2017. "Single-hidden layer neural networks for forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 116-128.
    7. repec:eee:energy:v:138:y:2017:i:c:p:977-990 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:89:y:2016:i:c:p:671-679. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.