IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v70y2021i1p202-225.html
   My bibliography  Save this article

Sequential aggregation of probabilistic forecasts—Application to wind speed ensemble forecasts

Author

Listed:
  • Michaël Zamo
  • Liliane Bel
  • Olivier Mestre

Abstract

In numerical weather prediction (NWP), the uncertainty about the future state of the atmosphere is described by a set of forecasts (called an ensemble). All ensembles have deficiencies that can be corrected via statistical post‐processing methods. Several ensembles, based on different NWP models, exist and may be corrected using different statistical methods. These raw or post‐processed ensembles can thus be combined. The theory of prediction with expert advice allows us to build combination algorithms with theoretical guarantees on the forecast performance. We adapt this theory to the case of probabilistic forecasts issued as stepwise cumulative distribution functions, computed from raw and post‐processed ensembles. The theory is applied to combine wind speed ensemble forecasts. The second goal of this study is to explore the use of two forecast performance criteria: the continuous ranked probability score (CRPS) and the Jolliffe–Primo test. The usual way to build skilful probabilistic forecasts is to minimize the CRPS. Minimizing the CRPS may not produce reliable forecasts according to the Jolliffe–Primo test. The Jolliffe–Primo test generally selects reliable forecasts, but could lead to issuing suboptimal forecasts in terms of CRPS. We propose to use both criteria to achieve reliable and skilful probabilistic forecasts.

Suggested Citation

  • Michaël Zamo & Liliane Bel & Olivier Mestre, 2021. "Sequential aggregation of probabilistic forecasts—Application to wind speed ensemble forecasts," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 202-225, January.
  • Handle: RePEc:bla:jorssc:v:70:y:2021:i:1:p:202-225
    DOI: 10.1111/rssc.12455
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12455
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12455?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wright, Marvin N. & Ziegler, Andreas, 2017. "ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i01).
    2. James E. Matheson & Robert L. Winkler, 1976. "Scoring Rules for Continuous Probability Distributions," Management Science, INFORMS, vol. 22(10), pages 1087-1096, June.
    3. Thordis L. Thorarinsdottir & Tilmann Gneiting, 2010. "Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 371-388, April.
    4. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    5. R. Winkler & Javier Muñoz & José Cervera & José Bernardo & Gail Blattenberger & Joseph Kadane & Dennis Lindley & Allan Murphy & Robert Oliver & David Ríos-Insua, 1996. "Scoring rules and the evaluation of probabilities," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 5(1), pages 1-60, June.
    6. Gilles Stoltz, 2010. "Agrégation séquentielle de prédicteurs : méthodologie générale et applications à la prévision de la qualité de l'air et à celle de la consommation électrique," Post-Print hal-00637060, HAL.
    7. S. Baran & S. Lerch, 2016. "Mixture EMOS model for calibrating ensemble forecasts of wind speed," Environmetrics, John Wiley & Sons, Ltd., vol. 27(2), pages 116-130, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baran, Sándor & Lerch, Sebastian, 2018. "Combining predictive distributions for the statistical post-processing of ensemble forecasts," International Journal of Forecasting, Elsevier, vol. 34(3), pages 477-496.
    2. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    3. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207, April.
    4. Carol Alexander & Michael Coulon & Yang Han & Xiaochun Meng, 2021. "Evaluating the Discrimination Ability of Proper Multivariate Scoring Rules," Papers 2101.12693, arXiv.org.
    5. Gneiting, Tilmann, 2011. "Quantiles as optimal point forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 197-207.
    6. Robert L. Winkler & Yael Grushka-Cockayne & Kenneth C. Lichtendahl Jr. & Victor Richmond R. Jose, 2019. "Probability Forecasts and Their Combination: A Research Perspective," Decision Analysis, INFORMS, vol. 16(4), pages 239-260, December.
    7. Kenneth C. Lichtendahl & Yael Grushka-Cockayne & Robert L. Winkler, 2013. "Is It Better to Average Probabilities or Quantiles?," Management Science, INFORMS, vol. 59(7), pages 1594-1611, July.
    8. Jenny Brynjarsdottir & Jonathan Hobbs & Amy Braverman & Lukas Mandrake, 2018. "Optimal Estimation Versus MCMC for $$\mathrm{{CO}}_{2}$$ CO 2 Retrievals," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 297-316, June.
    9. Victor Jose, 2009. "A Characterization for the Spherical Scoring Rule," Theory and Decision, Springer, vol. 66(3), pages 263-281, March.
    10. Sándor Baran & Patrícia Szokol & Marianna Szabó, 2021. "Truncated generalized extreme value distribution‐based ensemble model output statistics model for calibration of wind speed ensemble forecasts," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    11. Theo S. Eicher & Chris Papageorgiou & Adrian E. Raftery, 2011. "Default priors and predictive performance in Bayesian model averaging, with application to growth determinants," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(1), pages 30-55, January/F.
    12. Tilmann Gneiting & Larissa Stanberry & Eric Grimit & Leonhard Held & Nicholas Johnson, 2008. "Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 211-235, August.
    13. Song, Haiyan & Wen, Long & Liu, Chang, 2019. "Density tourism demand forecasting revisited," Annals of Tourism Research, Elsevier, vol. 75(C), pages 379-392.
    14. Luisa Bisaglia & Matteo Grigoletto, 2021. "A new time-varying model for forecasting long-memory series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 139-155, March.
    15. Yael Grushka-Cockayne & Kenneth C. Lichtendahl Jr. & Victor Richmond R. Jose & Robert L. Winkler, 2017. "Quantile Evaluation, Sensitivity to Bracketing, and Sharing Business Payoffs," Operations Research, INFORMS, vol. 65(3), pages 712-728, June.
    16. Cameron J. Williams & Kevin J. Wilson & Nina Wilson, 2021. "A comparison of prior elicitation aggregation using the classical method and SHELF," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 920-940, July.
    17. Braun, Julia & Sabanés Bové, Daniel & Held, Leonhard, 2014. "Choice of generalized linear mixed models using predictive crossvalidation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 190-202.
    18. Sebastian Lerch & Sándor Baran, 2017. "Similarity-based semilocal estimation of post-processing models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 29-51, January.
    19. Taillardat, Maxime & Fougères, Anne-Laure & Naveau, Philippe & de Fondeville, Raphaël, 2023. "Evaluating probabilistic forecasts of extremes using continuous ranked probability score distributions," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1448-1459.
    20. Tommaso Proietti & Martyna Marczak & Gianluigi Mazzi, 2017. "Euromind‐ D : A Density Estimate of Monthly Gross Domestic Product for the Euro Area," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 683-703, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:70:y:2021:i:1:p:202-225. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.