IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v173y2010i2p371-388.html
   My bibliography  Save this article

Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression

Author

Listed:
  • Thordis L. Thorarinsdottir
  • Tilmann Gneiting

Abstract

As wind energy penetration continues to grow, there is a critical need for probabilistic forecasts of wind resources. In addition, there are many other societally relevant uses for forecasts of wind speed, ranging from aviation to ship routing and recreational boating. Over the past two decades, ensembles of dynamical weather prediction models have been developed, in which multiple estimates of the current state of the atmosphere are used to generate a collection of deterministic forecasts. However, even state of the art ensemble systems are uncalibrated and biased. Here we propose a novel way of statistically post-processing dynamical ensembles for wind speed by using heteroscedastic censored (tobit) regression, where location and spread derive from the ensemble. The resulting ensemble model output statistics method is applied to 48-h-ahead forecasts of maximum wind speed over the North American Pacific Northwest by using the University of Washington mesoscale ensemble. The statistically post-processed density forecasts turn out to be calibrated and sharp, and result in a substantial improvement over the unprocessed ensemble or climatological reference forecasts. Copyright (c) 2009 Royal Statistical Society.

Suggested Citation

  • Thordis L. Thorarinsdottir & Tilmann Gneiting, 2010. "Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 371-388.
  • Handle: RePEc:bla:jorssa:v:173:y:2010:i:2:p:371-388
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-985X.2009.00616.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre-Julien Trombe & Pierre Pinson & Henrik Madsen, 2012. "A General Probabilistic Forecasting Framework for Offshore Wind Power Fluctuations," Energies, MDPI, Open Access Journal, vol. 5(3), pages 1-37, March.
    2. repec:eee:intfor:v:34:y:2018:i:3:p:477-496 is not listed on IDEAS
    3. Manuel Gebetsberger & Jakob W. Messner & Georg J. Mayr & Achim Zeileis, 2016. "Tricks for improving non-homogeneous regression for probabilistic precipitation forecasts: Perfect predictions, heavy tails, and link functions," Working Papers 2016-28, Faculty of Economics and Statistics, University of Innsbruck.
    4. Mário Fernando De Sousa & Helton Saulo & Víctor Leiva & Paulo Scalco, 2018. "On Some Properties Of A New Asymmetry-Based Tobit Model," Anais do XLIV Encontro Nacional de Economia [Proceedings of the 44th Brazilian Economics Meeting] 129, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    5. Yan, Jie & Liu, Yongqian & Han, Shuang & Wang, Yimei & Feng, Shuanglei, 2015. "Reviews on uncertainty analysis of wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1322-1330.
    6. Zhao, Jing & Guo, Zhen-Hai & Su, Zhong-Yue & Zhao, Zhi-Yuan & Xiao, Xia & Liu, Feng, 2016. "An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed," Applied Energy, Elsevier, vol. 162(C), pages 808-826.
    7. Reto Stauffer & Jakob W. Messner & Georg J. Mayr & Nikolaus Umlauf & Achim Zeileis, 2016. "Ensemble Post-Processing of Daily Precipitation Sums over Complex Terrain Using Censored High-Resolution Standardized Anomalies," Working Papers 2016-21, Faculty of Economics and Statistics, University of Innsbruck.
    8. repec:bla:jorssc:v:66:y:2017:i:1:p:29-51 is not listed on IDEAS
    9. Heinermann, Justin & Kramer, Oliver, 2016. "Machine learning ensembles for wind power prediction," Renewable Energy, Elsevier, vol. 89(C), pages 671-679.
    10. Iversen, Emil B. & Morales, Juan M. & Møller, Jan K. & Madsen, Henrik, 2016. "Short-term probabilistic forecasting of wind speed using stochastic differential equations," International Journal of Forecasting, Elsevier, vol. 32(3), pages 981-990.
    11. Baran, Sándor, 2014. "Probabilistic wind speed forecasting using Bayesian model averaging with truncated normal components," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 227-238.
    12. Jakob W. Messner & Georg J. Mayr & Daniel S. Wilks & Achim Zeileis, 2013. "Extending Extended Logistic Regression for Ensemble Post-Processing: Extended vs. Separate vs. Ordered vs. Censored," Working Papers 2013-32, Faculty of Economics and Statistics, University of Innsbruck.
    13. Jakob W. Messner & Achim Zeileis & Jochen Broecker & Georg J. Mayr, 2013. "Improved Probabilistic Wind Power Forecasts with an Inverse Power Curve Transformation and Censored Regression," Working Papers 2013-01, Faculty of Economics and Statistics, University of Innsbruck.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:173:y:2010:i:2:p:371-388. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.