IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v336y2024i1d10.1007_s10479-022-04913-y.html
   My bibliography  Save this article

Stochastic optimization with dynamic probabilistic forecasts

Author

Listed:
  • Peter Tankov

    (Institut Polytechnique de Paris)

  • Laura Tinsi

    (EDF R &D)

Abstract

We consider a sequential decision making process such as energy trading or electrical production scheduling whose outcome depends on the future realization of a random factor, such as a meteorological variable. Assuming that the decision maker has access to a dynamically updated probabilistic forecast (predictive distribution) of the random factor, we propose several stochastic models for the evolution of the probabilistic forecast of a given quantity, and show how these models may be calibrated from ensemble forecasts, commonly provided by weather centers. We then show how these stochastic models can be used to determine optimal decision making strategies to maximize a specific gain functional. Applications to wind energy trading are given.

Suggested Citation

  • Peter Tankov & Laura Tinsi, 2024. "Stochastic optimization with dynamic probabilistic forecasts," Annals of Operations Research, Springer, vol. 336(1), pages 711-747, May.
  • Handle: RePEc:spr:annopr:v:336:y:2024:i:1:d:10.1007_s10479-022-04913-y
    DOI: 10.1007/s10479-022-04913-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04913-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04913-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/4273 is not listed on IDEAS
    2. Kiesel, Rüdiger & Paraschiv, Florentina, 2017. "Econometric analysis of 15-minute intraday electricity prices," Energy Economics, Elsevier, vol. 64(C), pages 77-90.
    3. S. Baran & S. Lerch, 2016. "Mixture EMOS model for calibrating ensemble forecasts of wind speed," Environmetrics, John Wiley & Sons, Ltd., vol. 27(2), pages 116-130, March.
    4. Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 275-309.
    5. René Aïd & P. Gruet & H. Pham, 2016. "An optimal trading problem in intraday electricity markets," Post-Print hal-01609481, HAL.
    6. Baran, Sándor, 2014. "Probabilistic wind speed forecasting using Bayesian model averaging with truncated normal components," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 227-238.
    7. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    8. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    9. Olivier F'eron & Peter Tankov & Laura Tinsi, 2020. "Price formation and optimal trading in intraday electricity markets," Papers 2009.04786, arXiv.org, revised Jun 2021.
    10. Zongjun Tan & Peter Tankov, 2018. "Optimal trading policies for wind energy producer," Post-Print hal-01348828, HAL.
    11. Pinson, P. & Girard, R., 2012. "Evaluating the quality of scenarios of short-term wind power generation," Applied Energy, Elsevier, vol. 96(C), pages 12-20.
    12. Thordis L. Thorarinsdottir & Tilmann Gneiting, 2010. "Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 371-388, April.
    13. Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
    14. Fred Espen Benth & Gleda Kutrolli & Silvana Stefani, 2021. "Dynamic Probabilistic Forecasting With Uncertainty," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 24(06n07), pages 1-18, September.
    15. Iversen, Emil B. & Morales, Juan M. & Møller, Jan K. & Madsen, Henrik, 2016. "Short-term probabilistic forecasting of wind speed using stochastic differential equations," International Journal of Forecasting, Elsevier, vol. 32(3), pages 981-990.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Tankov & Laura Tinsi, 2021. "Decision making with dynamic probabilistic forecasts," Papers 2106.16047, arXiv.org.
    2. Thomas Deschatre & Xavier Warin, 2023. "A Common Shock Model for multidimensional electricity intraday price modelling with application to battery valuation," Papers 2307.16619, arXiv.org.
    3. Michaël Zamo & Liliane Bel & Olivier Mestre, 2021. "Sequential aggregation of probabilistic forecasts—Application to wind speed ensemble forecasts," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 202-225, January.
    4. Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
    5. Ren'e Aid & Andrea Cosso & Huy^en Pham, 2020. "Equilibrium price in intraday electricity markets," Papers 2010.09285, arXiv.org.
    6. Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).
    7. Sebastian Lerch & Sándor Baran, 2017. "Similarity-based semilocal estimation of post-processing models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 29-51, January.
    8. Lei Zhang & Lun Xie & Qinkai Han & Zhiliang Wang & Chen Huang, 2020. "Probability Density Forecasting of Wind Speed Based on Quantile Regression and Kernel Density Estimation," Energies, MDPI, vol. 13(22), pages 1-24, November.
    9. Olivier F'eron & Peter Tankov & Laura Tinsi, 2020. "Price formation and optimal trading in intraday electricity markets with a major player," Papers 2011.07655, arXiv.org.
    10. Baran, Sándor & Lerch, Sebastian, 2018. "Combining predictive distributions for the statistical post-processing of ensemble forecasts," International Journal of Forecasting, Elsevier, vol. 34(3), pages 477-496.
    11. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    12. Work, James & Hauer, Grant & Luckert, M.K. (Marty), 2018. "What ethanol prices would induce growers to switch from agriculture to poplar in Alberta? A multiple options approach," Journal of Forest Economics, Elsevier, vol. 33(C), pages 51-62.
    13. Kathrin Glau & Ricardo Pachon & Christian Potz, 2019. "Speed-up credit exposure calculations for pricing and risk management," Papers 1912.01280, arXiv.org.
    14. Dong, Wenfeng & Kang, Boda, 2019. "Analysis of a multiple year gas sales agreement with make-up, carry-forward and indexation," Energy Economics, Elsevier, vol. 79(C), pages 76-96.
    15. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    16. Gabriel J Power & Charli D. Tandja M. & Josée Bastien & Philippe Grégoire, 2015. "Measuring infrastructure investment option value," Journal of Risk Finance, Emerald Group Publishing, vol. 16(1), pages 49-72, January.
    17. Gkousis, Spiros & Welkenhuysen, Kris & Harcouët-Menou, Virginie & Pogacnik, Justin & Laenen, Ben & Compernolle, Tine, 2024. "Integrated geo-techno-economic and real options analysis of the decision to invest in a medium enthalpy deep geothermal heating plant. A case study in Northern Belgium," Energy Economics, Elsevier, vol. 134(C).
    18. O. Samimi & Z. Mardani & S. Sharafpour & F. Mehrdoust, 2017. "LSM Algorithm for Pricing American Option Under Heston–Hull–White’s Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 173-187, August.
    19. Mo, Jian-Lei & Schleich, Joachim & Zhu, Lei & Fan, Ying, 2015. "Delaying the introduction of emissions trading systems—Implications for power plant investment and operation from a multi-stage decision model," Energy Economics, Elsevier, vol. 52(PB), pages 255-264.
    20. Song-Ping Zhu & Xin-Jiang He, 2018. "A hybrid computational approach for option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:336:y:2024:i:1:d:10.1007_s10479-022-04913-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.